Evaluation of meteorological drought effects on underground water level fluctuations using data mining methods (case study: semi-deep wells of Golestan province)

Author:

Roshan Ameneh1,Ghorbani Khalil1,Salarijazi Meysam1,Oskouei Ebrahim Asadi2

Affiliation:

1. Gorgan University of Agricultural Sciences and Natural Resources

2. Iran Meteorological Organization

Abstract

Abstract In most arid and semiarid environments, groundwater is one of the precious resources threatened by water table decline and desiccation, thus it must be constantly monitored. Identifying the causes influencing the variations of the subsurface water level, such as meteorological drought, is one approach for monitoring these fluctuations. In the present study, the effect of two meteorological drought indices SPI and SPEI on the fluctuations of the underground water level was evaluated, as was their relationship with the drought index of the subsurface water level (SWI) using multivariate linear regression and M5 decision tree regression. After calculating climatic and hydrological drought indicators in a 6-month time window for a long-term statistical period (1989–2018), the semi-deep aquifers of Golestan province, which is located in northern Iran, were considered as a research location for this purpose. The results demonstrated that the effect of meteorological drought does not immeddergiately manifest in the changes of the subsurface water table and the hydrological drought index. By adding the meteorological drought index with a 6-month lag step, the average air temperature, and the total rainfall from the previous 6 months as new variables, the correlation with the SWI index increases, so that in the best-case scenario, the M5 decision tree model provides the best result in predicting the SWI index. The second half of the year yielded a coefficient of determination of 0.92 and an error value of RMSE = 0.27 for the SPEI index. Among the meteorological drought indicators, the SPEI index, which is based on precipitation and evapotranspiration, created a stronger link with the SWI index, which highlights the significance of potential evapotranspiration. It is a warning that, as a result of global warming, subsurface water tables in this region may fall in the future.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3