Can Long-short Term Memory Neural Network With Symbolic Genetic Algorithm Predict Stock Price Change Basing on Fundamental Indicators

Author:

Li Qi1,Kamaruddin Norshaliza1,Al-Jaifi Hamdan Ali2

Affiliation:

1. University of Technology Malaysia

2. Taylor's University

Abstract

Abstract This paper presents an enhanced framework that combines Symbolic Genetic Algorithm (SGA) with Long-Short Term Memory Neural Network (LSTM) for predicting cross-sectional price returns using fundamental indicators of 4,500 listed stocks in China. The study addresses the challenges posed by fundamental indicators resembling smart beta factors in efficient markets and the low frequency of fundamental indicator updates for deep learning models (DNN). The proposed DNN framework incorporates data augmentation and feature selection techniques, resulting in significant improvements in Rank Information coefficient (Rank IC) and IC information ratio (ICIR) by 1,128% and 5,360% for fundamental driven data. Additionally, a rule-based strategy based on the hybrid SGA-LSTM model outperforms major Chinese stock indexes, generating impressive average annualized excess returns compared to the CSI 300 and CSI 500 indexes. These findings highlight the effectiveness of LSTM with SGA in optimizing cross-sectional stock return predictions based on fundamental indicators, providing valuable insights for financial professionals..

Publisher

Research Square Platform LLC

Reference24 articles.

1. ModAugNet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module;Baek Y;Expert Syst Appl,2018

2. Chen K, Zhou Y, Dai FY (2015) A LSTM-based method for stock returns prediction: A case study of China stock market. Proceedings 2015 Ieee International Conference on Big Data, 2823–2824. ://WOS:000380404600357

3. Stock Prediction Based on Genetic Algorithm Feature Selection and Long Short-Term Memory Neural Network;Chen S;IEEE Access,2021

4. Genetic Algorithm-Optimized Long Short-Term Memory Network for Stock Market Prediction;Chung H;Sustainability,2018

5. Genetic algorithm-optimized multi-channel convolutional neural network for stock market prediction;Chung H;Neural Comput Appl,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3