Investigating the Metabolomic Pathways in Female Reproductive Endocrine Disorders: A Mendelian Randomization Study

Author:

Lu Fei-fan1,Wang Zheng1ORCID,Yang Qian-qian1,Yan Feng-shang1,Xu Chang1,Wang Ming-tang1,Xu Zhu-jing2,Cai Sheng-yun1,Guan Rui1

Affiliation:

1. Naval Medical University

2. Jinshan Branch of Shanghai Sixth Peoples Hospital

Abstract

Abstract

Background Reproductive endocrine disorders (RED) including polycystic ovary syndrome (PCOS), endometriosis (EMs), and female infertility (FI), significantly affect women's health globally, with varying prevalence across different regions. These conditions can be addressed through medication, surgical interventions, and lifestyle modifications. However, the limited understanding of RED's etiology and the substantial economic burden of its treatment highlight the importance of investigating its pathogenesis. Metabolites play a critical role in metabolic processes and are potentially linked to the development of RED. Despite existing studies suggesting correlations between metabolites and RED, conclusive evidence remains scarce, primarily due to the observational nature of these studies, which are prone to confounding factors. Methods This study utilized Mendelian Randomization (MR) to explore the causal relationship between metabolites and RED, leveraging genetic variants associated with metabolite levels as instrumental variables to minimize confounding and reverse causality. Data were obtained from the Metabolomics GWAS Server and the IEU OpenGWAS project. Instrumental variables were selected based on their association with the human gut microbiota composition, and the GWAS summary statistics for metabolites, PCOS, EMs, and FI were analyzed. The MR-Egger regression and random-effects inverse-variance weighted (IVW) methods were employed to validate the causal relationship. Cochran's Q test was employed to evaluate heterogeneity, sensitivity analysis was performed using leave-one-out analysis, and for pleiotropy analysis, the intercept term of MR-Egger's method was investigated. Results The MR analysis revealed significant associations between various metabolites and RED conditions. For instance, a positive association was found between 1-palmitoylglycerophosphocholine and PCOS, while a negative association was noted between phenylacetate and FI. The study identified several metabolites associated with an increased risk and others with protective effects against PCOS, EMs, and FI. These findings highlight the complex interplay between metabolites and RED, suggesting potential pathways through which these conditions could be influenced or treated. Conclusion This MR study provides valuable insights into the causal relationship between metabolites and female reproductive endocrine disorders, suggesting that metabolic alterations play a significant role in the pathogenesis of PCOS, EMs, and FI, and offering a foundation for future research and therapeutic development.

Publisher

Research Square Platform LLC

Reference56 articles.

1. Gut microbiome and reproductive endocrine diseases: a Mendelian randomization study;Liang Y;Front Endocrinol,2023

2. Global trends in polycystic ovary syndrome research: A 10-year bibliometric analysis;Shi N;Front Endocrinol,2023

3. Pathophysiology, diagnosis, and management of endometriosis;Horne AW;BMJ,2022

4. Unexplained Female Infertility Associated with Genetic Disease Variants;Dougherty MP;N Engl J Med,2023

5. Female subfertility;Farquhar CM;Nat Rev Dis Primers,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3