Preparation and Characterization of Affordable Experimental Sensors Array for Particulate Matter Sensing

Author:

Javadzadehkalkhoran Majid1,Trabzon Levent1

Affiliation:

1. Istanbul Technical University

Abstract

Abstract Interest for particulate matter (PM) sensors has increased significantly during last decade. Having a proper experimental setup to test these sensors is necessary. Most of the devices that are used in the PM test setups for both PM generating and measuring are bulky and expensive. In this study a cost-effective experimental setup has been designed with a custom made PM generator and small size laser and quartz crystal microbalance (QCM) sensors. The generator has the capability of producing PM from three different sources: dry powder, liquid suspension and combustion. The QCM completes the weakness of small laser sensors for sensing the ultra-fine particles. Moreover, performance of the QCM sensor has been investigated with different PM sources and different ambient conditions. It has been found that the response of QCM could be affected from PM source and ambient condition. The change in PM composition and size causes notable impact on QCM response. Relative humidity (RH) also could change the sensor response up to 22%. While changing the temperature of the flow has not significant effect on QCM response, increasing the temperature from 25°C to 30°C caused 12% change in QCM response in grease-coated one. The QCM sensor has the best response with small size smoke PM’s with lowest effect from ambient conditions.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3