PET-MR Guided, Pre-targeted delivery to HER2(+) Breast Cancer Model

Author:

Si Ge1,Hapuarachchige Sudath1,Lesniak Wojciech1,Artemov Dmitri1ORCID

Affiliation:

1. Johns Hopkins University

Abstract

Abstract Purpose: HER2(+) metastatic breast cancer (mBC) is one of the most aggressive and lethal cancer types among females. While initially effective, targeted therapeutic approaches with trastuzumab and pertuzumab antibodies and antibody-drug conjugates (ADC) lack long-term efficacy against HER2(+) mBC and can cause severe systemic toxicity due to off-target effects. Therefore, the development of novel targeted delivery platforms that minimize toxicity and increase therapeutic efficacy is critical to the treatment of HER2(+) breast cancer (BC). A pretargeting delivery platform can minimize the non-specific accumulation and off-target toxicity caused by traditional one-step delivery method by separating the single delivery step into a pre-targeting step with high-affinity biomarker binding ligand followed by the subsequent delivery step of therapeutic component with fast clearance. Each delivery component is functionalized with bioorthogonal reactive groups that quickly react in situ, forming cross-linked clusters on the cell surface, which facilitates rapid internalization and intracellular delivery of therapeutics. Procedures: We have successfully developed a click chemistry-based pretargeting platform for HER2(+) BC enabling PET-MR image guidance for reduced radiation dose, high sensitivity, and good soft tissue contrast. Radiolabeled trastuzumab and superparamagnetic iron-oxide carriers (uSPIO) were selected as pretargeting and delivery components, respectively. HER2(+) BT-474 cell line and corresponding xenografts were used for in vitro and in vivo studies. Results: An enhanced tumor accumulation as well as tumor- to-organ accumulation ratio was observed in pretargeted mice up to 24 h post uSPIO injection. A 40% local T1 decrease in the pretargeted mice tumor was observed within 4 h, and an overall 15% T1 drop was retained for 24 h post uSPIO injection. Conclusions: Prolonged tumor retention and increased tumor-to-organ accumulation ratio provided a solid foundation for pretargeted image-guided delivery approach for in vivo applications.

Publisher

Research Square Platform LLC

Reference28 articles.

1. Cancer statistics, 2023;Siegel RL;CA Cancer J Clin,2023

2. HER2: Biology, Detection, and Clinical Implications;Gutierrez C;Arch Pathol Lab Med,2011

3. Breast Cancer Treatment: A Review;Waks AG;JAMA,2019

4. Trastuzumab (herceptin);Gemmete JJ;AJNR Am J Neuroradiol,2011

5. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate;Lewis Phillips GD;Cancer Res,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3