Evaluation on liquefaction effect of potassium dissolution extraction from low-grade solid potash ore in Qarhan Salt Lake, northern of Tibetan Plateau

Author:

Song Yachao1,Hu Han1,Ye Chuanyong2,Zhao Yuanyi2,Ma Lichun2,Zhang Juan3,Yan Qunxiong3,Lin Yuhan3

Affiliation:

1. China University of Geosciences

2. Institute of Mineral Resources, Chinese Academy of Geological Sciences

3. QingHai Salt Lake Industry Co., Ltd

Abstract

Abstract China, being the world's largest consumer of potassium fertilizer, faces significant challenges due to limited potassium reserves. Qarhan Salt Lake stands out as a reservoir containing 296 million tons of low-grade solid potash ore (KCl), establishing itself as the premier potassium fertilizer production base in China. The extraction of low-grade solid potash ore via liquefaction technology, leading to the generation of potassium-rich brine, emerges as a pivotal strategy for sustainable potash exploitation in the region. This approach offers a promising solution to mitigate the potassium salt shortage in China. This paper systematically examines the transformation in KCl content of solid potash ore within the Bieletan section of Qarhan Salt Lake before (2007) and after liquefaction (2022). The study employs quantitative assessments to determine liquefaction volume and efficiency. Results reveal that, at a shallow depth of 23.20m, the average KCl content of solid potash ore decreases from 2.15% before liquefaction to 1.00% after liquefaction. This observed decrease of 1.15% (53% reduction) underscores the substantial impact of liquefaction. A total of 136.94 million tons of KCl are dissolved, providing a sustainable resource for approximately 15 years or more. During the initial stages of liquefaction (2007-2008), a rapid decline in the KCl content of solid potash ore is noted, with liquefaction efficiency significantly influenced by the positioning of the brine mining channel. As liquefaction progresses, efficiency diminishes, although the overall efficiency surpasses that of the Huobuxun section at the eastern extremity of Qarhan Salt Lake. This study holds significant implications for refining the solid potash liquefaction mining strategy in Qarhan Salt Lake, providing valuable guidance for future optimization efforts.

Publisher

Research Square Platform LLC

Reference24 articles.

1. World peak potash: An analytical study;Al Rawashdeh R;Resources Policy,2020

2. Experimental study on solid-liquid ore conversion in Qarhan Salt Lake;An LY;Journal of Chengdu University of Technology (Natural Science Edition),2005

3. Study on the response mechanism of solid potassium solution to solvent injection rate in Qarhan Salt Lake;Chang Z;Acta Geoscientia Sinica,2022

4. Life cycle assessment of potash fertilizer production in China Resources;Chen W;Conservation and Recycling,2018

5. Sr isotope and major ion compositional evidence for formation of Qarhan Salt Lake, western China;Fan QS;Chemical Geology,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3