Multi-spatial scale land use land cover influences on seasonally dominant water quality along Middle Ganga Basin

Author:

Krishnaraj Ashwitha1ORCID,Honnasiddaiah Ramesh1

Affiliation:

1. National Institute of Technology Karnataka

Abstract

Abstract In this study, we compared catchment, riparian, and reach scale models to assess the effect of LULC on WQ. Using various multivariate techniques, a 14-year data set of 20 WQ variables from 20 monitoring stations (67,200 observations) is studied along the Middle Ganga Basin (MGB). Based on the similarity and dissimilarity of WQPs, the k-means clustering algorithm classified the 20 monitoring stations into four clusters. Seasonally, the three PCs chosen explained 75.69% and 75% of the variance in the data. With PCs > 0.70, the variables EC, pH, Temp, TDS, NO2 + NO3, P-Tot, BOD, COD, and DO have been identified as dominant pollution sources. The applied RDA analysis revealed that LULC has a moderate to strong contribution to WQPs during the wet season but not during the dry season. Furthermore, dense vegetation is critical for keeping water clean, whereas agriculture, barren land and build-up area degrade WQ. Besides that, the findings suggest that the relationship between WQPs and LULC differs at different scales. The stacked ensemble regression (SER) model is applied to understand the model's predictive power across different clusters and scales. Overall, the results indicate that the riparian scale is more predictive than the watershed and reach scales.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3