Computational study on Phosphorylation of Nucleosides and Nucleotides by Austin Model-1 method

Author:

Bojja Rajeshwar Rao

Abstract

Abstract Phosphorylation of Nucleosides and Nucleotides play essential function for the enzymatic synthesis of DNA and RNA to participate in energy transfer processes, intracellular signalling, and the regulation of proteins’ biological activity. The changing of the base sequence is to cause chromosomal mutations which are sometimes useful and occasionally harmful. Phosphorylation of Nucleosides and Nucleotides have been optimized and evaluated by semi-empirical molecular orbital AM1 method. In this connection, the heats of formation (∆Hfo), dipole moment (µ), energies of frontier molecular orbitals (EHOMO and ELUMO) and quantum chemical descriptors have been performed. It is observed that stability of nucleosides in DNA (deoxythymidin > deoxycytidine > deoxyguanosine > deoxyadenosine) as per heats of formation (∆Hfo) data. The dipole moment (µ) of nucleosides are investigated in DNA (deoxythymidin > deoxycytidine > deoxyadenosine > deoxyguanosine). Furthermore, the dipole-dipole interactions take part a critical role during the sequencing and replication of DNA has been discussed.

Publisher

Research Square Platform LLC

Reference11 articles.

1. (a). Rachwalak, M.; Romanowska, J.; Sobkowski, M.; Stawinski, (2021) J. Nucleoside Di- and Triphosphates as a New Generation of Anti-HIV Pronucleotides. Chemical and Biological Aspects. Appl. Sci., 11, 2248. https://doi.org/10.3390/app11052248. (b). Berg, J.M.; Tymoczko, J.L.; Gatto, G.J.; Stryer, L. (2019) Biochemistry, 9th ed.; Palgrave Macmillan: London, UK.

2. (a). Depaix, A.; Peyrottes, S.; Roy, B. (2018) One-pot synthesis of nucleotides in water medium. Phosphorus Sulfur Silicon Relat. Elem. 194, 335–336. (b). Burgess, K.; Cook, D. (2000) Syntheses of Nucleoside Triphosphates. Chem. Rev. 100, 2047–2059.

3. (a). Hollenstein, M. (2012) Nucleoside Triphosphates—Building Blocks for the Modification of Nucleic Acids. Molecules, 17, 13569–13591.(b). Hou, S.; Qu, Z.; Tang, L.; Shuhua, Q.Z.H. (2014) Advances in the Synthesis of Organic Pyrophosphate. Chin. J. Org. Chem. 34, 54. (c). Sherstyuk, Y.V.; Abramova, T.V. (2015) How to Form a Phosphate Anhydride Linkage in Nucleotide Derivatives. Chembiochem Eur. J. Chem. Biol., 16, 2562–2570. (d). Tanaka, H. (2015) Recent Approaches to the Chemical Synthesis of Sugar Nucleoside Diphosphates. Trends Glycosci. Glycotechnol. 27, 99–110. (e). Ahmadipour, S.; Miller, G.J. (2017) Recent advances in the chemical synthesis of sugar-nucleotides. Carbohydr. Res. 451, 95–109. (f). Kaczynski, T.P.; Chmielewski, M.K. (2017) Mini-Review of the Phosphate Center Activation Strategy in Nucleoside Triphosphate Preparation. Mini Rev. Org. Chem. 14, 448–452. (g). Camarasa,M. (2018)-J. Prodrugs of Nucleoside Triphosphates as a Sound and Challenging Approach: A PioneeringWork That Opens a New Era in the Direct Intracellular Delivery of Nucleoside Triphosphates. ChemMedChem, 13, 1885–1889. [PubMed]

4. (a). Baddiley, J.; Michelson, A.M.; Todd, A.R. (1949) Nucleotides. Part II. A Synthesis of Adenosine Triphosphate. J. Chem. Soc. 582–586. (b). Baddiley, J.; Michcelson, A.M.; Todd, A.R. (1948) Synthesis of Adenosine Triphosphate. Nat. Cell Biol. 161, 761–762.

5. (a). Khorana, G.; Todd, A.R. (1953) Studies on Phosphorylation. XI. The Reaction Between Carbodi-imides and Acid Esters of Phosphoric Acid—A New Method for the Preparation of Pyrophosphates. J. Chem. Soc. 2257–2260. (b). Baddiley, J.; Hughes, N.A. (2006) The Synthesis of Nucleotide Coenzymes. In Advances in Enzymology and Related Areas of Molecular Biology;Wiley: Hoboken, NJ, USA, Volume 22, pp. 157–203. (c). Smith, M.; Khorana, H.G. (1958) Nucleoside Polyphosphates. VI. An Improved and General Method for the Synthesis of Ribo- and Deoxyribonucleoside 5’-Triphosphates. J. Am. Chem. Soc. 80, 1141–1145. (d). Chambers, R.W.; Khorana, H.G. (1958) Nucleoside Polyphosphates. VII. The Use of Phosphoramidic Acids in the Synthesis of Nucleoside-5’-Pyrophosphates. J. Am. Chem. Soc. 80, 3749–3752. (e). Moffatt, J.G.; Khorana, H.G. (1958) Nucleoside Polyphosphates. VIII. New and Improved Syntheses of Uridine Diphosphate Glucose and Flavin Adenine Dinucleotide Using Nucleoside-5’-Phosphoramidates. J. Am. Chem. Soc. 80, 3756–3761. (f). Clark, V.M.; Kirby, G.W.; Todd, A.R. (1957) Studies on Phosphorylation. Part XV. The Use of Phosphoramidic Esters in Acylation. A New Preparation of Adenosine-5’-Pyrophsphate and Adenosine-5’-Triphosphate. J. Chem. Soc. 79, 1497–1501. (g). Moffatt, J.G. (1964) A General Synthesis of Nucleoside 5’-Triphosphates. Can. J. Chem. 599–604.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3