The metabolic and physiological responses to spaceflight of a lipopeptide- producing Bacillus subtilis

Author:

Qin Wan-Qi1,Liu Yi-Fan1,Liu Jin-Feng2,Zhou Lei1,Yang Shi-Zhong1,Gu Ji-Dong3,Mu Bo-Zhong1

Affiliation:

1. East China University of Science and Technology

2. Daqing Huali Biotechnology Co., Ltd

3. Guangdong Technion Israel Institute of Technology

Abstract

Abstract

Background The outer space is an extreme environment that has attracted continuous interest in microbial adaptation and safety, due to its high mutagenesis frequency and genetic variability. To date, several studies have assessed the impact of the space environment on the microbiomes and microorganisms. While the survival of Bacillus subtilis after spaceflight is well established, how the phenotype and metabolic function of B. subtilis respond to space stress is rarely reported. Results In this study, we performed a space flight of the B. subtilis TD7 strain facilitated by the launch project of the Xinyidai Zairen Feichuan-Shiyan Chuan, and compared the strains after spaceflight with the wild-type in terms of their growth, morphology, biofilm formation and secondary metabolism. The spaceflight strain exhibited slower growth, higher cell density, different morphology and decreased biofilm formation. Importantly, a decrease in the lipopeptide production was observed after spaceflight. Thus, we used a multi-omics approach to uncover the molecular mechanisms underlying the changeable secondary metabolism. A total of 14 gene clusters for secondary metabolite biosynthesis were identified in both the wild-type strain and spaceflight strains through whole-genome sequencing, including nonribosomal peptide synthetase. The comparative transcriptome revealed 997 differentially expressed genes which involved in the TCA cycle, fatty acid degradation, amino acid biosynthesis, and quorum sensing systems. The differential expression analysis of 26 lipopeptide-related DEGs further elucidated the relationship between the space environment and the regulation of secondary metabolism. Conclusion Our study is the first study to provide new insight into the behaviors, metabolic functions and adaptation mechanisms of B. subtilis in response to spaceflight. This knowledge could contribute to a better understanding of the relationship between the space environment and microbial adaption mechanisms.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3