A Clustering-based Multiple Kernel Learning Algorithm for Multi-Class Classification

Author:

xiaofeng Zhang1

Affiliation:

1. Jiangsu Administration Institute

Abstract

Abstract

Multiple kernel learning algorithms typically optimize kernel alignment, structural risk minimization, and Bayesian functions. However, they have limitations, including inapplicability to multi-class classification, high time complexity, and no analytic solution. Analyzing clustering and classification similarities, we propose a novel clustering-based multiple kernel learning algorithm for multi-class classification (CBMKL). This algorithm transforms input space to high-dimension feature space using multiple kernel mapping functions. It estimates base kernel function weights and constructs the decision function using clustering objectives. This CBMKL algorithm has several advantages. 1) It handles multi-class problems directly. 2) This algorithm has an analytical solution, avoiding approximate solutions from sampling methods. 3) It also has polynomial time complexity. Experiments on two datasets illustrate these advantages.

Publisher

Research Square Platform LLC

Reference27 articles.

1. Lee, W. J., Verzakov, S., & Duin, R. P. (2007). Kernel combination versus classifier combination. in: Proceedings of the 7th International Workshop on Multiple Classifier Systems. Prague, Czech Republic: Springer, pp. 22–31.

2. De Sa, V. R., Gallagher, P. W., Lewis, J. M., & Malave, V. L. (2010). Multi-view kernel construction, Mach. Learn. vol. 79, nos. 1&2, pp. 47–71.

3. Bucak, S. S., Jin, R., & Jain, A. K. (2014). July,. Multiple Kernel Learning for Visual Object Recognition: a Review, in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 7, pp. 1354–1369.

4. Multiple Kernel Learning for Hyperspectral Image Classification;Liu Tianzhu G,2020

5. Learning the kernel matrix with semide nite programming;Lanckriet GRG;the Journal of Machine Learning Research,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3