Quantifying liver fat using a low field unilateral MR system

Author:

von Morze Cornelius1,Blazey Tyler1,Conradi Mark S.2

Affiliation:

1. Washington University

2. ABQMR, Inc

Abstract

Abstract Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent condition with a large impact on public health, but remains largely undetected among individual patients. MRI proton density fraction (MRI-PDFF) is the gold standard method for measuring liver fat content, but might be regarded as “overkill” for this diffuse liver disease process. There is a pressing current medical need for simpler non-invasive approaches to measure and track liver fat content over time, for which emerging unilateral permanent magnet MR technology is uniquely suited. In this study, we evaluate the potential of the barrel magnet system first described by Utsuzawa and Fukushima in 2017 to quantify liver fat content. We tested this novel unilateral MR system in oil-water suspensions and subsequently with ex vivo tissue samples from normal and fatty duck livers. In oil-water suspensions, the system provided good linear agreement between fat signal amplitudes derived from Bayesian analysis of MR signals and known oil content. Clear differences in water and fat signal amplitudes were also observed between normal and fatty liver samples. The ability to discriminate differences in fat content as little as 5% demonstrates clear potential clinical relevance for medical management of NAFLD using a scaled-up system designed for human studies.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3