Affiliation:
1. Molecular Genetics, University of Groningen
2. Chr. Hansen A/S
3. Institute of Public Health and Clinical Nutrition, University of Eastern Finland
4. Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong,
5. Host-Microbe Metabolic Interactions, University of Groningen
6. Molecular and Cell Biology Division, School of Biological Sciences, University of Hong Kong
Abstract
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has become a major health risk and a serious worldwide issue. MAFLD typically arises from aberrant lipid metabolism, insulin resistance, oxidative stress, and inflammation. However, subjacent causes are multifactorial. The gut has been proposed as a major factor in health and disease, and over the last decade, bacterial strains with potentially beneficial effects on the host have been identified. In vitro cell models have been commonly used as an early step before in vivo drug assessment, and can confer complementary advantages in gut and liver health research. In this study, several selected strains of the order Bacteroidales were used in a three-cell line in vitro analysis (HT-29, Caco-2, and HepG2 cell lines) to investigate their potential as new-generation probiotics and microbiota therapeutics. Antimicrobial activity, a potentially useful trait, was studied, and the results showed that Bacteroidales can be a source of either wide- or narrow-spectrum antimicrobials targeting other closely related strains. Moreover, Bacteroides sp. 4_1_36 induced a significant decrease in gut permeability, as evidenced by the high TEER values in the Caco-2 monolayer assay, as well as a reduction in free fatty acid accumulation and improved fatty acid clearance in a steatosis HepG2 model. These results suggest that Bacteroidales may spearhead the next generation of probiotics to prevent or diminish MAFLD.
Publisher
Research Square Platform LLC
Reference83 articles.
1. Gut biogeography of the bacterial microbiota;Donaldson GP;Nat Rev Microbiol,2016
2. Role of the normal gut microbiota;Jandhyala SM;World J Gastroenterol WJG,2015
3. Role of microbiota and related metabolites in gastrointestinal tract barrier function in NAFLD;Fernandez-Cantos MV;Tissue Barriers,2021
4. Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders?;Chakaroun RM;Nutrients,2020
5. Thursby E, Juge N (2017) Introduction to the human gut microbiota.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献