Affiliation:
1. Pusan National University
2. Pusan University
3. Max Planck POSTECH/KOREA Res. Init. / POSTECH
Abstract
Abstract
Nonlinear autocorrelation was one of the earliest and simplest tools for obtaining partial temporal information about an ultrashort optical pulse by gating it with itself. However, since the spectral phase is lost in a conventional autocorrelation measurement, it is insufficient for a full characterization of an ultrafast electric field, requiring additional spectral information for phase retrieval. Here, we show that introducing an intensity asymmetry into a conventional nonlinear interferometric autocorrelation preserves some spectral phase information within the autocorrelation signal, which enables the full reconstruction of the original electric field, including the direction of time, using only a spectrally integrating detector. We call this technique Phase-Enabled Nonlinear Gating with Unbalanced Intensity (PENGUIN). It can be applied to almost any existing nonlinear interferometric autocorrelator, making it capable of complete optical field characterization and thus providing an inexpensive and less complex alternative to methods relying on spectral measurements, such as frequency-resolved optical gating (FROG) or spectral phase interferometry for direct electric-field reconstruction (SPIDER). More importantly, PENGUIN allows the precise characterization of ultrafast fields in non-radiative (e.g., plasmonic) nonlinear optical interactions where spectral information is inaccessible. We demonstrate this novel technique through simulations and experimentally by measuring the electric field of ~6-fs laser pulses from a Ti:sapphire oscillator. The results are validated by comparison with the well-established FROG method.
Publisher
Research Square Platform LLC