Affiliation:
1. The University of Auckland
Abstract
Abstract
Gait analysis outside the laboratory has been possible by recent advancements in wearable sensors like inertial measurement units (IMUs) and Electromypgraphy (EMG) sensors. The aim of this study was to compare performance of four different non-linear regression machine learning (ML) models to estimate lower-limb joints’ kinematics, kinetics, and muscle forces using IMUs and EMGs’ data. Seventeen healthy volunteers (9F, 28 ± 5 yrs) were asked to walk over-ground for a minimum of 16 trials. For each trial, marker trajectories and three force-plates data were recorded to calculate pelvis, hip, knee, and ankle kinematics and kinetics, and muscle forces (the targets) as well as 7 IMUs and 16 EMGs. The most important features from sensors’ data were extracted using Tsfresh python package and fed into 4 ML models; Artificial Neural Network (ANN), Random Forest (RF), Support Vector Machine (SVM) and Multivariate Adaptive Regression Spline (MARS) for targets’ prediction. The RF model outperformed the other ML models by providing lower prediction errors in all intended targets. This study suggested that a combination of wearable sensors’ data with an RF model is a promising tool to overcome limitations of traditional optical motion capture for 3D gait analysis.
Publisher
Research Square Platform LLC
Reference58 articles.
1. Wearable inertial measurement units for assessing gait in real-world environments;Renggli D;J. Frontiers in physiology,2020
2. Relationship between daily and in-laboratory gait speed among healthy community-dwelling older adults;Takayanagi N;J. Scientific reports,2019
3. Castillo, P., Lozano, R., and Dzul, A.E. Sensors, modems and microcontrollers for UAVs. J. Modelling and Control of Mini-Flying Machines. 185–232 (Springer, 2005).
4. Muscles alive. Their functions revealed by electromyography;Basmajian JV;J. Academic Medicine.,1962
5. Sartori, M., Lloyd, D.G., Besier, T., Fernandez, J., and Farina, D. Electromyography-driven modeling for simulating subject-specific movement at the neuromusculoskeletal level. J. Surface Electromyography: Physiology, Engineering, and Applications, eds R. Merletti and D. Farina (Hoboken, NJ: John Wiley & Sons, Inc.). 247–272. https://doi.org/10.1002/9781119082934.ch09 (2016).