Biotic and abiotic factors collectively drive the macroscopic differences in soil seed bank density between planted and natural forests

Author:

Wang Jiangfeng1,Wang Ru1,Zhang Xing1,Xu Jiali1,Zhang Xueting1,Guo Xiali2,Gao Jie1

Affiliation:

1. Xinjiang Normal University

2. Guangxi University

Abstract

Abstract

Global climate change is intensifying forest degradation, making the soil seed bank density (SSBD) in planted and natural forests a crucial resource for ecosystem restoration. Focusing on soil seed bank density can help us assess the potential of vegetation regeneration and maintain ecosystem stability and function. However, the macro-scale distribution differences and controlling mechanisms of SSBD in these forests remain elusive. This study focuses on the SSBD in 537 natural and 383 planted forest sites across China, examining the specific impacts of climatic, soil, and forest stand factors. It also predicts the pathways through which these factors modulate SSBD variations in both forest types. Our findings reveal that SSBD is significantly higher in planted forests compared to natural ones (P < 0.001). SSBD shows a marked declining trend with increasing temperature and precipitation (P < 0.001). In contrast, increases in sunlight duration and evapotranspiration positively correlate with SSBD in both forest types. Natural forests exhibit higher sensitivity to soil nutrient changes than planted forests. Both forest types show similar SSBD trends with changes in forest stand factors. Soil pH independently contributes the most to the spatial variation of SSBD in natural forests, while soil nitrogen content is the most significant contributor for planted forests. Mean Annual Temperature (MAT) and Mean Annual Precipitation (MAP) not only directly affect SSBD in natural forests but also indirectly through soil pH, forest stand density, and forest net primary productivity, with direct impacts outweighing the indirect. In planted forests, SSBD is primarily influenced directly by Mean Annual Evapotranspiration (MAE), MAP, soil nitrogen content, and stand density. Additionally, MAE and soil nitrogen content indirectly affect SSBD through forest stand density. Our results reveal that in forest management and administration, attention should not only be given to changes in climatic factors but also to soil nutrient loss.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3