Malicious Website Identification Using Design Attribute Learning

Author:

Naim Or1,Cohen Doron1,Gal Irad Ben1

Affiliation:

1. Tel Aviv University

Abstract

Abstract Malicious websites pose a challenging cybersecurity threat. Traditional tools for detecting malicious websites rely heavily on industry-specific domain knowledge, are maintained by large-scale research operations, and result in a never-ending attacker-defender dynamic. Malicious websites need to balance two opposing requirements to successfully function: escaping malware detection tools while attracting visitors. This fundamental conflict can be leveraged to create a robust and sustainable detection approach based on the extraction, analysis and learning of design attributes for malicious website identification. In this paper, we propose a next-generation algorithm for extended design attribute learning that learns and analyzes web page structures, contents, appearances and reputations to detect malicious websites. A large-scale experiment that was conducted on more than 35,000 websites suggests that the proposed algorithm effectively detects more than 83% of all malicious websites while maintaining a low false-positive rate of 2%. In addition, the proposed method can incorporate user feedback and flag new suspicious websites and thus can be effective against zero-day attacks.

Publisher

Research Square Platform LLC

Reference70 articles.

1. Xu L, et al. (2014) An evasion and counter-evasion study in malicious websites detection. IEEE

2. Heiderich M, Frosch T, Holz T (2011) IceShield: detection and mitigation of malicious websites with a frozen DOM. In: Proceedings of the 14th international conference on Recent Advances in Intrusion Detection (RAID’11), Springer-Verlag, pp 281–300

3. Liu L, et al. (2012) Chrome Extensions: Threat Analysis and Countermeasures. NDSS

4. DOMtegrity: ensuring web page integrity against malicious browser extensions;Toreini E;International Journal of Information Security,2019

5. Dewald A, Holz T, Freiling FC (2010) ADSandbox: Sandboxing JavaScript to fight malicious websites. proceedings of the 2010 ACM Symposium on Applied Computing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3