Power, measurement error, and pleiotropy robustness in twin-design extensions to Mendelian Randomization

Author:

Castro-de-Araujo Luis FS1,Singh Madhurbain1,Zhou Yi1,Vinh Philip1,Maes Hermine HM1,Verhulst Brad2,Dolan Conor V3,Neale Michael C1

Affiliation:

1. Virginia Commonwealth University

2. Texas A&M University

3. Vrije Universiteit. Amsterdam

Abstract

Abstract Mendelian Randomization (MR) has become an important tool for causal inference in the health sciences. It takes advantage of the random segregation of alleles to control for background confounding factors. In brief, the method works by using genetic variants as instrumental variables, but it depends on the assumption of exclusion restriction, i.e., that the variants affect the outcome exclusively via the exposure variable. Equivalently, the assumption states that there is no horizontal pleiotropy from the variant to the outcome. This assumption is unlikely to hold in nature, so several extensions to MR have been developed to increase its robustness against horizontal pleiotropy, though not eliminating the problem entirely (Sanderson et al. 2022). The Direction of Causation (DoC) model, which affords information from the cross-twin cross-trait correlations to estimate causal paths, was extended with polygenic scores to explicitly model horizontal pleiotropy and a causal path (MR-DoC, Minică et al 2018). MR-DoC was further extended to accommodate bidirectional causation (MR-DoC2 ; Castro-de-Araujo et al. 2023). In the present paper, we compared the power of the DoC model, MR-DoC, and MR-DoC2. We investigated the effect of phenotypic measurement error and the effect of misspecification of unshared (individual-specific) environmental factors on the parameter estimates.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3