Microplastics accelerates the premature aging of blood vessels though ROS-mediated CDK5 signaling pathway

Author:

Wang Kaihao1,Du Yipeng1,Li Peixin1,Guan Chang1,Zhou Min1,Wu Lanlan1,Liu Zengfu1,Huang Zheng1

Affiliation:

1. The First Affiliated Hospital of Guangzhou Medical University

Abstract

Abstract Background Microplastic has become a kind of pollutant widely existing in soil, atmosphere, fresh water and marine environment. At present, microplastics have been found in many tissues and organs of organisms. Research shows that as a new environmental pollutant, microplastics has shown a health hazard to human and animal. Aging and aging-related diseases are major social and medical problems facing the world. However, up to now, the effect of microplastic exposure on premature aging of blood vessels has not been evaluated. Therefore, we investigated the health damage of microplastics to blood vessels in vivo and in vitro experiments. Methods ELISA, indirect immunofluorescence, SiRNA, laser confocal microscopy, and Flow cytometry were performed to evaluate the effect of microplastics on premature aging of blood vessels. Results In vitro experiments, we found that microplastics can internalize into vascular cells, and the internalized microplastics cause damage to organelles. Further biochemical experiments showed that microplastics stimulation caused the premature aging of blood vessels by detecting a series of aging markers. Further mechanism research indicates that microplastics could increase ROS level of mitochondria mediated by calcium overload, and then ROS leads to the LaminA degradation by CDK5 mediation, further resulting in genomic instability, thus finally causing the aging of vascular cells/tissues. In vivo model, we found that microplastics induced aging damage on vascular tissue, the expression of aging maker molecules were significantly increased. Furthermore, the level of inflammation and oxidative stress was also significantly increased. Conclusion In summary, in this work, we evaluated the effect of microplastic exposure on premature aging of blood vessels, and we also revealed the molecular mechanism by which microplastics cause premature aging of the cardiovascular system.

Publisher

Research Square Platform LLC

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3