T18/S19 diphosphorylation of myosin regulatory light chain impairs pulmonary artery relaxation in monocrotaline-induced pulmonary hypertensive rats

Author:

Cho Suhan1,Oh Seung Beom1,Kim Hae Jin2,Kim Sung Joon1

Affiliation:

1. Seoul National University College of Medicine, Seoul 03080, Korea (south)

2. University of Missouri School of Medicine, Department of Medical Pharmacology and Physiology

Abstract

Abstract Phosphorylation of Ser19 (S19-p) on the myosin regulatory light chain (MLC2) is critical for arterial contraction. It has shown that elevated rho A-dependent kinase (ROCK) activity or decreased MLC phosphatase (MLCP) activity leads to further phosphorylation of Thr18 (T18/S19-pp), which has been linked to vasospastic diseases. However, this phenomenon has not yet been studied in the context of pulmonary arterial hypertension (PAH). In monocrotaline-induced PAH (PAH-MCT) rat model, we observed a significant delay in pulmonary artery (PA) relaxation following high potassium-induced contraction, which persisted even with the use of a L-type calcium channel blocker or in a calcium-free solution. Immunoblot analysis showed increased levels of both S19-p and T18/S19-pp in unstimulated PAs from PAH-MCT rats. Proteomics analysis revealed a reduction in soluble guanylate cyclase (sGC) and protein kinase G (PKG) levels, and immunoblotting confirmed decreased levels of MYPT1 (a component of MLCP) and increased ROCK in PAH-MCT. In the control PAs, the pharmacological inhibition of sGC with ODQ resulted in a prominent delay of relaxation and increased T18/S19-pp as like PAH-MCT. The delayed relaxation and the T18/S19-pp in PAH-MCT was reversed by ROCK inhibitor, Y27632, while not by membrane permeable 8-Br-cGMP. The delayed relaxation and T18/S19-diP in the ODQ-treated control PA were also reversed by Y27632. Taken together, the increased T18/S19-pp leads to the decreased ability of PA to relax in PAH-MCT rats. This is caused by the decreased sGC and MLCP, and increased ROCK. Targeting and inhibiting ROCK may therefore be an effective strategy for pharmacological treatment of PAH.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3