Pathway Engineering of Multicomponent Self-Assembly in M12L24 Nanospheres using Pseudorotaxanes

Author:

Bouwens Tessel1,Bobylev Eduard2,Poole David1,Mathew Simon3ORCID,Reek Joost1ORCID

Affiliation:

1. Homogeneous and Supramolecular Catalysis Group

2. Universiteit van Amsterdam

3. University of Amsterdam

Abstract

Abstract Selective formation of multicomponent structures via the self-assembly of numerous building blocks is ubiquitous in biological systems but challenging to emulate synthetically. The energy landscape for product formation broadens with increasing number of components, introducing kinetic intermediates with trap-state ability. Therefore, pathway engineering becomes an essential tool to navigate these complex kinetic landscapes and push self-assembly to greater limits. Here, we report an example of pathway engineering in the self-assembly of cuboctahedral M12L24 nanospheres through pseudorotaxane formation to the exo-functionalized ligands. Without ring in solution for pseudorotaxane formation, a Pdx–Ly polymer resting-state is rapidly formed. Solutions with ring exhibit rapid nanosphere formation from small Pdx–Ly oligomers, with Pdx–Ly polymer formation bypassed. The threading of ring to an exo-functionalized ligand therefore directs the self-assembly pathway toward nanosphere formation. As the process of pseudorotaxane formation increases rate of nanosphere formation, the ring effectively acts as a supramolecular catalyst for nanosphere self-assembly.

Publisher

Research Square Platform LLC

Reference63 articles.

1. How Far Can We Push Chemical Self-Assembly?;Service RF;Science,2005

2. Strategies for binding multiple guests in metal–organic cages;Rizzuto FJ;Nat Rev Chem,2019

3. Gold(I) Catalysis at Extreme Concentrations Inside Self-Assembled Nanospheres;Gramage-Doria R;Angewandte Chemie International Edition,2014

4. H. Cofactor Controlled Encapsulation of a Rhodium Hydroformylation Catalyst;Jongkind LJ;Angewandte Chemie International Edition,2019

5. Aida, T., Meijer, E. W. & Stupp, S. I. Functional Supramolecular Polymers. Science 335, 813–817 (2012).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3