Shunt Resistance Optimized Indoor Photovoltaic System for Powering Internet of Things

Author:

Xue Shujian1,Yang Guangan2,Zhao Xing3,Wu Jianfei4,Li Run1,Li Binhong3,Xu Yong2

Affiliation:

1. Guangdong Greater Bay Area Institute of Integrated Circuit and System

2. Nanjing University of Posts and Telecommunications

3. Institute of Microelectronics of the Chinese Academy of Sciences

4. National University of Defence Technology

Abstract

Abstract This article proposes a photovoltaic system of ultrathin silicon solar cell by using indoor lighting through enhanced shunt resistance, nanostructure of light-trapping, and tubular daylight system for powering the internet of things (IoT) devices. Simulation results show that, by increasing the shunt resistance from 100 Ω.cm2 to 104 Ω.cm2, the efficiency of indoor solar cell can be improved from less than 0.5% to be over 14%. Moreover, with the help of ultrathin wafer and nanostructure of light-trapping to improve the near-infrared light absorption and open circuit voltage, the efficiency of the indoor amorphous silicon (a-Si) heterojunction solar cell can be further improved to be 17.09%. The tubular daylight system is an excellent supplement to the light indoor intensity and thus can increase the power production.

Publisher

Research Square Platform LLC

Reference20 articles.

1. S. Philipps, F. Ise, W. Warmuth, and P. Projects GmbH, “Photovoltaics Report”, Accessed: Mar. 16, 2023. [Online]. Available: www.ise.fraunhofer.de

2. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%;Yoshikawa K;NatEn,2017

3. Reassessment of the limiting efficiency for crystalline silicon solar cells;Richter A;IEEE J Photovolt,2013

4. “Solar photovoltaic (PV) module prices.” https://ourworldindata.org/grapher/solar-pv-prices (accessed Mar. 02, 2023).

5. S. J. Reichelstein and A. Sahoo, “Cost- and Price Dynamics of Solar PV Modules,” SSRN Electronic Journal, Nov. 2021, doi: 10.2139/ssrn.2727089.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3