Machine learning-enabled chemical space exploration of all-inorganic perovskites for photovoltaics

Author:

Im Jino1ORCID,Kim Jin-Soo1ORCID,Noh Juhwan1

Affiliation:

1. Korea Research Institute of Chemical Technology

Abstract

Abstract The vast compositional and configurational spaces of multi-element metal halide perovskites (MHPs) result in significant challenges when designing MHPs with promising stability and optoelectronic properties. In this paper, we propose a framework for the design of B-site-alloyed ABX3 MHPs by combining density functional theory (DFT) and machine learning (ML). We performed generalized gradient approximation with Perdew–Berke–Ernzerhof functional for solids (PBEsol) on 3,159 B-site-alloyed perovskite structures using a compositional step of 1/4. Crystal graph convolution neural networks (CGCNNs) were trained on the 3,159 DFT datasets to predict the decomposition energy, bandgap, and types of bandgaps. The trained CGCNN models were used to explore the compositional and configurational spaces of 41,400 B-site-alloyed ABX3 MHPs with a compositional step of 1/16, by accessing all possible configurations for each composition. The electronic band structures of the selected compounds were calculated using the hybrid functional (PBE0). Based on the DFT/ML-combined screening, 10 promising compounds with optimal bandgaps were selected and, from among these 10 compounds, CsGe0.3125Sn0.6875I3 and CsGe0.0625Pb0.3125Sn0.625Br3 were suggested as photon absorbers for single-junction and tandem solar cells, respectively. Then, we calculated the optical absorption spectra and spectroscopic limited maximum efficiency of these 10 compounds. The design framework presented herein is a good starting point for the design of novel mixed MHPs for optoelectronic applications.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3