Shape-stable composite phase change materials encapsulated by Lignin-based ordered porous carbon for thermal energy storage

Author:

Pan Hong1,Li Tianyang1,Xu Lihui1,Li Keting1,Shen Yong1,Ni Kai1

Affiliation:

1. Shanghai University of Engineering Science

Abstract

Abstract This paper showed two bio-based shape-stable composite phase change materials which were prepared through a convenient vacuum impregnation method. Lignin-based ordered porous carbon (LOC) was the porous supporting material, polyethylene glycol (PEG) and paraffin (PA) was the phase change substance in this work. The maximum loading of PCMs in the obtained LOC/PEG and LOC/PA are 70% and 75%, respectively, and their phase transition enthalpy (ΔHm) are also as high as 81.5 J·g‒1 and 88.5 J·g‒1, respectively. In addition, the obtained LOC/PA showed better thermal management capabilities and better thermal stability after infrared thermography tests compared to LOC/PEG. Considering the low cost and excellent properties, the obtained lignin-based ordered porous carbon composite phase change material has a promising future for practical applications in thermal energy storage.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3