MRI-based radiomics feature combined with tumor markers to predict TN staging of rectal cancer

Author:

liu zhiyu1,Zhang Jinsong2,Wang Hongxuan1,Chen Xihao1,Song Jiawei1,Xu Dong1,Li Jipeng1,Zheng Minwen2

Affiliation:

1. Department of Digestive Surgery, the First Affiliated Hospital of Air Force Military Medical University

2. Department of Radiology, the First Affiliated Hospital of Air Force Military Medical University

Abstract

Abstract Objectives: The aim of this study is to evaluate the predictive ability of MRI-based radiomics combined with tumor markers for TN staging in patients with rectal cancer and to develop a prediction model for TN staging. Methods: A total of 190 patients with rectal adenocarcinoma who underwent total mesorectal excision at the First Affiliated Hospital of the Air Force Medical University between January 2016 and December 2020 were included in the study. An additional 54 patients from a prospective validation cohort were included between August 2022 and August 2023. Preoperative tumor markers and MRI imaging data were collected from all enrolled patients. The 190 patients were divided into a training cohort (n=133) and a validation cohort (n=57). Radiomics features were extracted by outlining the region of interest (ROI) on T2WI sequence images. Feature selection and radiomics score (Rad-score) construction were performed using least absolute shrinkage and selection operator regression analysis (LASSO). The postoperative pathology TNM stage was used to differentiate locally advanced rectal cancer (T3/4 or N1/2) from locally early rectal cancer (T1/2, N0). Logistic regression was used to construct separate prediction models for T-stage and N-stage. The models' predictive performance was evaluated using DCA curves and calibration curves. Results: The T staging model showed that Rad-score, based on 8 radiomics features, was an independent predictor of T staging. When combined with CEA, tumor diameter, mesoretal fascia (MRF), and extramural venous invasion (EMVI), it effectively differentiated between T1/2 and T3/4 stage rectal cancers in the training cohort (AUC 0.87 [95% CI: 0.81-0.93]). The N-staging model found that Rad-score, based on 10 radiomics features, was an independent predictor of N-staging. When combined with CA19.9, degree of differentiation, and EMVI, it effectively differentiated between N0 and N1/2 stage rectal cancers. The training cohort had an AUC of 0.84 (95% CI: 0.77-0.91). The calibration curves demonstrated good precision between the predicted and actual results. The DCA curves indicated that both sets of predictive models could provide net clinical benefits for diagnosis. Conclusion: MRI-based radiomics features are independent predictors of T-staging and N-staging. When combined with tumor markers, they have good predictive efficacy for TN-staging of rectal cancer.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3