Development and Validation of Prognostic Prediction Model for Submandibular Gland Cancer Based on the SEER Database.

Author:

He Junkun1,Zhao Feng1,Li Jiangmiao1,Wei Fangyu1,Li Qiyun1,Su Jiping1

Affiliation:

1. The First Affiliated Hospital of Guangxi Medical University, The Guangxi Zhuang Autonomous Region

Abstract

Abstract

Objective Accurately predicting the prognosis of submandibular gland carcinoma (SGC) patients remains a challenging task. The purpose of this study was to develop a columnar graph prognostic prediction model for submandibular gland cancer based on the SEER database, using feature selection with lasso regression and modeling with Cox regression. Methods This study utilized data from the SEER database, focusing on 1362 cases of SGC. Various clinical and demographic factors, including age, tumor size, histology, and lymph node metastasis, were considered as potential prognostic factors. Feature selection was performed using lasso regression, and a Cox proportional hazards model was constructed, taking into account the complex interactions between variables and their impact on survival outcomes. Results The established prognostic prediction model demonstrated good accuracy and reliability. The model effectively identified several important prognostic factors, including age, tumor size, histology, and lymph node metastasis, which strongly influenced the prognosis of SGC. The model showed good discrimination and calibration with c-indexes of 0.802 (0.784–0.821) in the training set and 0.756 (0.725–0.787) in the validation set. The decision curve analysis (DCA) curve reflected clinical utility. Conclusion This study suggests that the prognostic prediction model based on Cox regression is a valuable tool for predicting the prognosis of patients with SGC. This approach has the potential to improve patient outcomes by facilitating personalized treatment plans and identifying high-risk patients who may benefit from more aggressive interventions.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3