Performance Evaluation of Different Machine Learning Algorithms on Student Dataset Clustered by K-means Algorithm

Author:

Kudale Gautam Appasaheb1,Rajpoot Sandeep Singh1

Affiliation:

1. Dr. A.P.J. Abdul Kalam Technical University

Abstract

Abstract This research paper presents an innovative approach to cluster the dataset and apply the different machine learning algorithms. For clustering, K-Means is used. Before applying K-Means, estimation of value of K is done by using the Elbow method followed by Silhouette method. For the entire experimental work, the Kaggle dataset has been taken into account. K-Means clustering used over here offers five different clusters. Here, each cluster shows identification of distinct student. Subsequently, four prominent machine learning algorithms—K-Nearest Neighbor (KNN), Neural Network (NN), Random Forest (RF), and Support Vector Machine (SVM) are applied and the performance metrics are measured. The comparative analysis of the machine learning algorithms reveals varying levels of accuracy, precision, recall, and F1-score across different clusters. The outcomes highlight the algorithm that exhibits superior performance in this specific context. Here the highest accuracy i.e. 92.00% is achieved with Random Forest algorithm.

Publisher

Research Square Platform LLC

Reference41 articles.

1. Margaret H. Dunhan, “Data Mining Introductory and Advanced Topics”, Pearson

2. Ian H.witten, Eibe Frank, Mark A. Hall, “Data Mining Practical Machine Learning Tools and Techniques”, 3rd Edition

3. Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, “Mining of Massive Datasets”, 2nd Edition

4. Jiawei Han, Micheline Kamber, Jian Pei, “Data Mining, Concepts and Techniques”, 3rd Edition

5. Alvaro Fuentes, “Hands-on Predictive Analytics with Python”

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3