A Multi-Material Additive Manufacturing virtual prototyping method for design to improve part strength

Author:

Kakaraparthi Shivaram,Chen Niechen1

Affiliation:

1. Northern Illinois University

Abstract

Abstract Multi-Material Additive Manufacturing (MMAM) offers new opportunities to realize components with more integrated features and functionalities in reduced manufacturing costs by eliminating assembly processes. However, the weak mechanical bond between different materials often results in unexpected weakness sections that reside around the multi-material boundary interface. Thus, strengthening the boundary interface is critical to enabling the wide application of MMAM processes in production. Our work approaches this challenge by introducing a new virtual prototyping method to strengthen MMAM parts by facilitating the design and planning process. In our work, a computational part strength prediction model is built, and this model is used to quickly and realistically predict the mechanical strength of a part design within the context of its manufacturing plan. This enables fast iteration of redesigns to create parts that can be directly printed with improved strength. Compared to the commonly used Design of Experiment-based approaches, this new virtual prototyping method offers a more time and cost-efficient solution that delivers better designs in a shorter design cycle and with no material wastage by eliminating the need for physical test printing.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3