Giant room-temperature spin-orbit torque in a bismuthate superconductor

Author:

Edgeton Anthony1,Harris Isaac2,Campbell Neil1,Chai Yahong3,Mazur Marcel4,Gurung Gautam5,Huang Xiaoxi2,Susarla Sandhya6ORCID,Tsymbal Evgeny7ORCID,Ralph Daniel4ORCID,Nan Tianxiang3,Rzchowski Mark1,Ramesh Ramamoorthy2ORCID,Eom Chang-Beom1ORCID

Affiliation:

1. University of Wisconsin–Madison

2. University of California, Berkeley

3. Tsinghua University

4. Cornell University

5. University of Nebraska

6. Arizona State University

7. University of Nebraska–Lincoln

Abstract

Abstract The emergence of artificial intelligence and machine-learning-based systems, in conjunction with the pervasive implementation of the internet of things has put a strong emphasis on the energy efficiency of computing. This has triggered research on multiple pathways to improve computing efficiency, spanning 3-D integration of logic and memory as well as new, physics-based pathways including those embracing the electron’s spin degree of freedom, namely spintronics. Concurrently, the proposed integration of superconductivity and spintronics emphasizes complex oxides as a promising platform which in principle can integrate spin current manipulation and high temperature superconductivity within the same complex system. Here, we report giant spin-orbit torque (SOT) discovered in the normal state of a complex oxide superconductor, Ba(Pb,Bi)O3, which provides isotropic and easily manipulated superconducting properties. Using spin-torque ferromagnetic resonance (ST-FMR) and d.c. non-linear Hall measurements, we find a robust SOT efficiency exceeding unity and demonstrate current driven magnetization switching at current densities as low as \(4\times {10}^{5}\text{A}{\text{c}\text{m}}^{-2}\). The hybridized s-p orbital character at the Fermi energy makes this an unexpectedly large value. We postulate the presence of an unconventional SOT generation in bismuthate heterostructures and anticipate our results will trigger further exploration of such complex oxides for the development of superconducting spintronics.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3