A Task Offloading Decision and Resource Allocation Algorithm Based on DDPG in Mobile Edge Computing

Author:

Li An1,Zheng Yeqiang1,Nong Wang2,Wang Gaocai2,Huang Shuqiang3

Affiliation:

1. Yulin Normal University

2. Guangxi University

3. Jinan University, Jinan University

Abstract

Abstract In mobile edge computing, the mobile device can offload tasks to the server near the edge of the mobile network for execution, thereby reducing the delay of task execution and the energy consumption of mobile device. However, limited resource of the edge server prevents the mobile device to offload all tasks to the edge servers for execution. To solve the problems, a mobile edge computing model of multi-users and single edge server is constructed in this paper. In order to minimize the weighted total cost composed of mobile device energy consumption and time delay under the constraints of task execution delay, computing resource and storage resource of the edge server, we propose a task offloading decision and resource allocation algorithm OADDPG based on Deep Deterministic Policy Gradient (DDPG). A special reward function is designed to make the reward value for correlating negatively with the total cost. We can get the lowest total cost when the algorithm reaches the maximum reward value. Experiment results show that the proposed algorithm can effectively reduce the weighted total cost of mobile devices and improve the success rate of task execution.

Publisher

Research Square Platform LLC

Reference26 articles.

1. Cyber foraging: Bridging mobile and cloud computing;Flinn J;Synthesis Lectures Mob Pervasive Comput,2012

2. Dinh HT, Lee C et al (2013) Oct., A survey of mobile cloud computing: architecture, applications, and approaches, Wireless Communications and Mobile Computing., vol. 13, no. 18, pp.1587–1611

3. M. Satyanarayanan., Mobile computing: the next decade, ACM SIGMOBILE Mobile Computing and Communications Review., vol. 15, no. 2, pp. 2–10, (2011)

4. Othman M, Madani S, Khan S (2013) A survey of mobile cloud computing application models, IEEE Communications Surveys & Tutorials., vol. 16, no. 1, pp. 393–413, Jul

5. Shi W, Cao J, Zhang Q (2016) Edge computing: Vision and challenges, IEEE Internet of Things Journal., vol. 3, no. 5, pp. 637–646, Oct

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3