Groundwater potentiality mapping using machine learning algorithms BouSbaa area, Marrakech, Morocco

Author:

Hanane Toudamrini1,Ahmed Algouti1,Abdellah Algouti1

Affiliation:

1. Cadi Ayyad University

Abstract

AbstractGroundwater recharge is crucial for managing freshwater resources. Machine learning algorithms are used to discuss the important aspects of groundwater exploration. For maximum accuracy, Extreme Gradient Boosting and Random Forest have been tested for modeling groundwater potential maps. A database of water point inventories has been prepared, randomly divided into 75% for training and 25% for model validation. A database of flows is used to confirm the feasibility of the model. Groundwater potential maps are generated using various relevant factors (elevation, slope, precipitation, etc.). After validation of the model using ROC-AUC and confirmation of feasibility with flow diagrams, these methods have shown high accuracy and relevant results for groundwater potential models.

Publisher

Research Square Platform LLC

Reference66 articles.

1. Andrieu J, Mering C (2008) Cartographie par télédétection des changements de la couverture végétale sur la bande littorale ouest-africaine: exemple des rivières du sud du delta du saloum (sénégal) au rio geba (guinée-bissau). Pôle Image de l’Université Paris Diderot – Paris 7, case courrier 7001 75205 Paris cedex 13.

2. ABHT (2014) Etude de révision du plan directeur d’aménagement intégré des ressources en eau des bassins du Tensift, Ksob et Igouzoulen.

3. Alcamo J, Henrichs T, Rösch T, (2000) L'eau mondiale en 2025: modélisation globale et analyse de scénarios pour la Commission mondiale de l'eau pour le XXIe siècle, vol. 3, Strasse, Cassel, Allemagne (2000), p. 34109.

4. Breiman L (2001) Random Forests Machine Learning; Springer: Berlin/Heidelberg, Germany, Volume 45, pp 5–32.

5. Artificial recharge of groundwater: hydrogeology and engineering;Bouwer H;Hydrogeol. J.,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3