Observation of photonic Peierls transition for manipulating electromagnetic waves in metallic periodic structures

Author:

Wu Chia Ho1,Liu Chengyang1,Lin Xianqing1,Wang Wei1,Guo Yi Chun2,Wang Zhuoyua3,Ye Guoqiang4,He Fang4,Ni Donghua4,Wang Xiaolong1,Shen Linfang1,Shen Jianqi5

Affiliation:

1. Zhejiang University of Technology

2. Chung Hua University

3. Ningbo University of Technology

4. Zhejiang Zhaolong Interconnect Technology Co., Ltd

5. Zhejiang University

Abstract

Abstract Peierls transition that modifies electronic band structure has attracted intensive attention in solid state physics. In the present work, a photonic analog of Peierls transition has been observed in a 1-D triangular metal diaphragm array, where the photonic bandgap structures have been designed at will by adjusting periodically the metal diaphragm positions. It is shown by the numerical analysis that the transmission and radiation effect of the present periodic metal structure designed through the Peierls transition rule exhibits the behavior significantly different from the original periodic structure with each unit cell containing a metal diaphragm. The near- and far-field measurement results are in good agreement with our theoretical simulation. The present effect of photonic Peierls transition can serve as a working mechanism for designing new types of guided wave devices. It can be seen that the photonic Peierls transition would be one of the simplest ways for modifying the transport characteristics of periodic structures.

Publisher

Research Square Platform LLC

Reference27 articles.

1. Raether, H. Surface Plasmons. Springer-Verlag, Berlin (1988).

2. Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons;Charbonneau R;Opt. Express,2005

3. Novel surface plasmon waveguide for high integration;Liu L;Opt. Express,2005

4. Mimicking surface plasmons with structured surfaces;Pendry JB;Science,2004

5. Surfaces with holes in them: new plasmonic metamaterials;Garcia-Vidal FJ;J. Opt. A: Pure Appl. Opt.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3