Improved metamodels for predicting high-dimensional outputs by accounting for the dependence structure of the latent variables: application to marine flooding

Author:

Rohmer Jeremy1,Sire Charlie2,Lecacheux Sophie1,Idier Deborah1,Pedreros Rodrigo1

Affiliation:

1. Bureau de Recherches Géologiques et Minières

2. Institut de Radioprotection et de Sûreté Nucléaire

Abstract

Abstract Metamodelling techniques have shown high performance to overcome the computational burden of numerical hydrodynamic models for fast prediction of key indicators of marine flooding (e.g. total flooded area). To predict flood maps (e.g. spatial distribution of maximum value of water depth during a flood event), a commonly-used approach is to rely on principal component analysis to reduce the high dimensionality of the flood map (related to the number of pixels typically of several 1,000s) by transforming the spatial output into a low number of latent variables (typically <10). One commonly-used approach is to build one metamodel per latent variable by assuming independence between the latent variables. Using two real cases of marine flooding, we show that the predictive performance of the metamodelling approach (relying on kriging metamodels) can significantly be improved when the dependence structure of the latent variables is accounted for. Our tests show that the most efficient approach relies on the clustering in the space of the latent variables (here with k-means algorithm). Complementing the approach with a kriging metamodel specifically dedicated to handle vector-valued variables allows an additional increase of predictability for the case with the larger size of the training dataset.

Publisher

Research Square Platform LLC

Reference43 articles.

1. Kernels for vector-valued functions: A review;Alvarez MA;Found Trends Mach Learn,2012

2. Baldi P (2012) Autoencoders, unsupervised learning, and deep architectures. In: Proceedings of ICML workshop on unsupervised and transfer learning (pp. 37–49). JMLR Workshop and Conference Proceedings

3. Deep learning methods for flood mapping: a review of existing applications and future research directions;Bentivoglio R;Hydrol Earth Syst Sci,2022

4. Storm surges and coastal flooding: status and challenges;Bertin X;La Houille Blanche,2016

5. Sensitivity analysis when model outputs are functions;Campbell K;Reliab Eng Syst Saf,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3