Parallel recovery of chromatin accessibility and gene expression dynamics from frozen human Regulatory T cells

Author:

Wong Ying Y.1,Harbison Jessica E.1,Hope Christopher M.1,Gundsambuu Batjargal1,Brown Katherine A.1,Wong Soon W.1,Brown Cheryl1,Couper Jennifer J.1,Breen Jimmy1,Liu Ning1,Pederson Stephen M.1,Köhne Maren2,Klee Kathrin2,Schultze Joachim2,Beyer Marc2,Sadlon Timothy1,Barry Simon C.1

Affiliation:

1. University of Adelaide

2. University of Bonn

Abstract

Abstract The epigenome and transcriptome constitute a critical element of a tightly regulated, cell-type specific gene expression program, and subtle perturbations in the regulation of this program can result in pathology. Epigenetic features such as DNA accessibility dictate transcriptional regulation in a cell type- and cell state- specific manner, and mapping this in health vs. disease in clinically relevant material is opening the door to new mechanistic insights and new targets for therapy. Assay for Transposase Accessible Chromatin Sequencing (ATAC-seq) allows profiling of chromatin accessibility with low cell input, making it amenable to the clinical setting, such as peripheral blood from clinical trials, and this makes it applicable to rare cell populations, such as regulatory T (Treg) cells. However, there is little known about the compatibility of the assay on materials recovered from cryopreserved rare cell populations. In the context of tolerance or autoimmunity, regulatory T cells play a critical role in maintaining immune homeostasis, and loss of numbers or function is linked to many diseases, making them a clinically relevant population to analyse using genomic platforms. Here we demonstrate the robustness and reproducibility of an ATAC-seq protocol comparing fresh or cryopreserved primary Treg cells, and comparing their profile in the steady state and in response to stimulation. We extend this method to explore the feasibility of conducting simultaneous quantitation of chromatin accessibility and transcriptome from a single aliquot of 50,000 Treg cells from cryopreserved PBMCs. Profiling of chromatin accessibility and gene expression in parallel within the same pool of cells controls for cellular heterogeneity and will be particularly beneficial for experiments constrained by limited input material, such as biobanked PBMC from clinical trials. This approach will be complementary to single-cell experiments as libraries used to profile chromatin accessibility and transcriptome are derived from the same population of cells, controlling for stochastic gene fluctuation in different cells in a population at any given time. Overall, we observed a high correlation of accessibility patterns and transcription factor (TF) dynamics between fresh Treg cells and cells recovered from cryopreservation samples. The distribution of fragment size, enrichment of transcription start sites (TSS) and genomic features of thawed Treg cells recapitulate that of the fresh cells. Furthermore, highly consistent global chromatin and transcriptional changes in response to stimulation were observed in both fresh and frozen samples. Lastly, highly similar transcriptomic profiles were obtained from whole cells and from the supernatants recovered from ATAC-seq reactions. This report highlights the feasibility of applying these techniques to profile the epigenomic landscape of cells recovered from cryopreservation biorepositories. Implementation of this approach is suitable in biorepositories and will contribute to advances in the field of translational research and personalized medicine.

Publisher

Research Square Platform LLC

Reference61 articles.

1. Molecular Insights Into Regulatory T-Cell Adaptation to Self, Environment, and Host Tissues: Plasticity or Loss of Function in Autoimmune Disease;Brown CY;Frontiers in Immunology,2020

2. Chromatin accessibility and the regulatory epigenome;Klemm SL;Nature Reviews Genetics,2019

3. The accessible chromatin landscape of the human genome;Thurman RE;Nature,2012

4. An integrated encyclopedia of DNA elements in the human genome;Dunham I;Nature,2012

5. Buenrostro, J.D., et al., ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol, 2015. 109: p. 21.29.1-9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3