Coupled Landslide Analyses Through Dynamic Susceptibility and Forecastable Hazard Analysis

Author:

Francis Daniel1ORCID,Bryson L. Sebastian1

Affiliation:

1. University of Kentucky College of Engineering

Abstract

Abstract Landslides, specifically those triggered through an increase of soil moisture after a rainfall event, pose severe threats to surrounding infrastructure. Potential landslide occurrences are monitored through identification of areas susceptible to occurrence, through susceptibility analyses, or areas likely to experience a landslide at a given time, through hazard analyses. Traditional landslide susceptibility systems are created as a function of static geomorphologic data. This is to say that, while spatially differing, susceptibility via this system does not change with time. Landslide hazard analyses consider dynamic data, such as that of precipitation, and provide warnings of when landslide occurrences are likely. However, these hazard analysis systems typically only provide warnings in near real time (i.e., over the next few days). Therefore, dynamic susceptibility (susceptibility that is seen to change with time rather than remain static) as well as the ability to forecast landslide hazard analyses beyond real time is desired. The study herein presents a novel workflow for the creation of dynamic landslide susceptibility and forecastable hazard analyses over a domain within Eastern Kentucky. Dynamic susceptibility was developed through inclusion of static geomorphic parameters and dynamic vegetation levels over sites of interest. These susceptibility data were used in the development of a logistic regression classification machine learning approach which yielded susceptibility classifications with an accuracy of 89%. Forecastable hazard analyses were developed as a function of forecasted soil moisture, assumed to be a controlling factor in landslide occurrence, over a site. Forecasting of soil moisture was conducted through development of a Long Short-Term Memory (LSTM) forecasting machine learning system. Forecasts of soil moisture were then assimilated into an infinite slope stability equation to provide forecasts of hazard analyses. These forecasted hazard analyses were investigated over known landslides with satisfactory results obtained. Therefore, this study presents a novel workflow for both dynamic and forecastable hazard analyses that will undoubtedly provide greater warning and preparation periods to those within landslide prone regions.

Publisher

Research Square Platform LLC

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3