Affiliation:
1. First Affiliated Hospital of Soochow University
Abstract
Abstract
Semaphorin 4C (SEMA4C) and its cognate receptor Plexin B2 are important regulators of axon guidance and are involved in many neurological diseases, in which SEMA4C acts not only as a ligand ("forward" mode) but also as a signaling receptor ("reverse" mode). However, the role of SEMA4C/Plexin B2 in intracerebral hemorrhage (ICH) remains unclear. In this study, ICH in adult male Sprague-Dawley rats was induced by autologous blood injection in the right basal ganglia.In vitro, cultured primary neurons were subjected to OxyHb to imitate ICH injury. Recombinant SEMA4C (rSEMA4C) and overexpressing lentiviruses encoding full-length SEMA4C or secretory SEMA4C (sSEMA4C) were administered to rats by intraventricular injection. First, we found that elevated levels of sSEMA4C in the cerebrospinal fluid (CSF) of clinical patients were associated with poor prognosis. And both SEMA4C and sSEMA4C were increased in brain tissue around hematoma after ICH in rats. Overexpression of SEMA4C could attenuate neuronal apoptosis, neurosis, and neurologic impairment after ICH. However, treatments with rSEMA4C or sSEMA4C overexpression exacerbated neuronal injury. In addition, when treated with SEMA4C overexpression, the forward mode downstream protein RhoA and the reverse mode downstream ID1/3 transcriptional factors of SEMA4C/Plexin B2 signaling were all activated. Nevertheless, when exposed to rSEMA4C or sSEMA4C overexpression, only the forward mode was activated. Thus, sSEMA4C may be a novel molecular biomarker to predict the prognosis of patients with ICH, and the prevention of SEMA4C cleavage is expected to be a promising therapeutic target.
Publisher
Research Square Platform LLC