Numerical Solution of Skin Friction in Porous Medium Using Brinkman Forchheimer Model Under Fuzzy Environment

Author:

Barhoi Amir1,Gohain Chittaranjan1,Hazarika G. C.2,Anand M. Clement Joe3

Affiliation:

1. Assistant Professor, Department of Mathematics, Duliajan College, Assam, India

2. Professor, Department of Mathematics, Dibrugarh University, Assam, India

3. Assistant Professor, Department of Mathematics, Mount Carmel College, Bengaluru, Karnataka, India.

Abstract

Abstract Fluid flow and transport processes through porous structures are a topic of great interest in various scientific and technical fields. In this paper an attempt has been made to fuzzify the boundary conditions and the differential equation governed by the flow of a steady incompressible viscous fluid flow through a porous medium confined between two horizontal walls using the Brinkman Forchheimer model. The 𝛼−𝑐𝑢𝑡 technique is used to show the validation for the uncertainty of the equation of the motion Numerical solution is carried out by developing computer codes for the Fuzzified boundary value problem. The effect of the permeability parameter 𝜎 and Ergun number 𝐸𝑟 is being discussed under fuzzy Environment. We observe that the uncertainty in the solution of the said problem is due to the effect of the permeability parameter 𝜎, but not for the parameter Ergun number 𝐸𝑟. Finally, we compare the corresponding values of the skin friction between crisp and Fuzzified values under the justifying range of the parameters. We have found that velocity decrease for the increase’s values of 𝜎.

Publisher

Research Square Platform LLC

Reference20 articles.

1. Difference Methods for Fuzzy Partial Differential Equations;Allahviranloo T;Comput. Methods Appl. Math.,2002

2. Numerical Study of Fuzzified Boundary Value Problem for Couette type Flow of Fluid Mechanics;Barhoi AG;Annals of Pure and Applied Mathematics,2018

3. A Calculation of Viscous Force Exerted by a Flowing fluid on a Dense Swarm of Particles;Brinkman HC;Application of Scientific Result,1947

4. On Fuzzy Mapping and Control;Chang SSI;IEEE Trans. Syst. man Cybernetics,1982

5. Darcy, H.: Les Fontainer Publiques de la ville de Dijon, p. 647. Dalmont, Paris (1856)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3