Probabilistic Photonic Computing with Chaotic Light

Author:

Pernice Wolfram1ORCID,Brückerhoff-Plückelmann Frank2,Borras Hendrik1ORCID,Klein Bernhard1ORCID,Varri Akhil2,Becker Marlon2,Dijkstra Jelle1,Brückerhoff Martin3,Wright C David4ORCID,Salinga Martin5ORCID,Bhaskaran Harish6ORCID,Risse Benjamin2,Fröning Holger1ORCID

Affiliation:

1. Heidelberg University

2. University of Münster

3. 6DEVK RE

4. University of Exeter

5. Westfälische Wilhelms-Universität Münster

6. University of Oxford

Abstract

Abstract

Biological neural networks effortlessly tackle complex computational problems and excel at predicting outcomes from noisy, incomplete data, a task that poses significant challenges to traditional processors. Artificial neural networks (ANNs), inspired by these biological counterparts, have emerged as powerful tools for deciphering intricate data patterns and making predictions. However, conventional ANNs can be viewed as "point estimates" that do not capture the uncertainty of prediction, which is an inherently probabilistic process. In contrast, treating an ANN as a probabilistic model derived via Bayesian inference poses significant challenges for conventional deterministic computing architectures. Here, we use chaotic light in combination with incoherent photonic data processing to enable high-speed probabilistic computation and uncertainty quantification. Since both the chaotic light source and the photonic crossbar support multiple independent computational wavelength channels, we sample from the output distributions in parallel at a sampling rate of 70.4 GS/s, limited only by the electronic interface. We exploit the photonic probabilistic architecture to simultaneously perform image classification and uncertainty prediction via a Bayesian neural network. Our prototype demonstrates the seamless cointegration of a physical entropy source and a computational architecture that enables ultrafast probabilistic computation by parallel sampling.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3