1. Alain Andres and Esther Villar-Rodriguez and Javier Del Ser. Collaborative Training of Heterogeneous Reinforcement Learning Agents in Environments with Sparse Rewards: What and When to Share?. 2022, cs.LG, 2202.12174, 10.1007/s00521-022-07774-5, arXiv
2. Matteo Bettini and Ryan Kortvelesy and Jan Blumenkamp and Amanda Prorok. VMAS: A Vectorized Multi-Agent Simulator for Collective Robot Learning. 2022, cs.RO, 2207.03530, 10.1007/978-3-031-51497-5_4, arXiv
3. Bettini, Matteo and Shankar, Ajay and Prorok, Amanda (2023) Heterogeneous Multi-Robot Reinforcement Learning. International Foundation for Autonomous Agents and Multiagent Systems, AAMAS '23, Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems
4. Bettini, Matteo and Shankar, Ajay and Prorok, Amanda (2023) System Neural Diversity: Measuring Behavioral Heterogeneity in Multi-Agent Learning. arXiv preprint arXiv:2305.02128
5. Bou, Albert and Bettini, Matteo and Dittert, Sebastian and Kumar, Vikash and Sodhani, Shagun and Yang, Xiaomeng and De Fabritiis, Gianni and Moens, Vincent (2023) TorchRL: A data-driven decision-making library for PyTorch. arXiv preprint arXiv:2306.00577