Genetically-Encoded Discovery of Perfluoroaryl-Macrocycles that Bind to Albumin and Exhibit Extended Circulation in-vivo.

Author:

Wong Jeffrey1,Kirberger Steven2,Qiu Ryan1,Ekanayake Arunika1,Kelich Payam3,Sarkar Susmita1,Alvizo-Paez Edgar1,Miao Jiayuan4,Kalhor-Monfared Shiva1,Dwyer John5,Nuss John5,Lin Yu-Shan4ORCID,Macauley Matthew1ORCID,Vukovic Lela6ORCID,Pomerantz William2ORCID,Derda Ratmir1ORCID

Affiliation:

1. University of Alberta

2. University of Minnesota

3. University of Texas at El Paso

4. Tufts University

5. Ferring Research Institute

6. The University of Texas at El Paso

Abstract

Abstract In this paper, we report selection of albumin-binding macrocyclic peptides from genetically encoded libraries of peptides modified by perfluoroaryl-cysteine SNAr chemistry. Modification of phage-displayed libraries SXCXnC-phage, n = 3–5, where X is any amino acid except for cysteine by decafluoro-diphenylsulfone (DFS), yields genetically-encoded library of octafluoro-diphenylsulfone-crosslinked macrocycles (OFS-SXCXnC-phage). Selection from these libraries using albumin as a bait identified a family of significantly enriched perfluoroaryl-macrocycles. Synthesis of perfluoroaryl-macrocycles predicted by phage display and testing their binding properties by 19F NMR and fluorescent polarization identified OFS-macrocycle with SICRFFC sequence as the most potent albumin binder. We observed that OFS-macrocycles slowly react with biological nucleophiles such as glutathione. Replacing decafluoro-diphenylsulfone by nearly isosteric pentafluorophenyl sulfide yielded perfluorophenylsulfide (PFS)-crosslinked macrocycles devoid of undesired reactivity. The augmented lead PFS-macrocycle with SICRFFC sequence exhibited KD = 4–6 µM towards human serum albumin and similar affinities towards rat and mouse albumins. When injected in mouse, the PFS-SICRFFCGGG compound was significantly retained in circulation in vivo when compared to control PFS-macrocyclic peptide. The perfluoroaryl-macrocycles with SICRFFC motif are the smallest known peptide macrocycle with significant affinity for human albumin and they are a productive starting point for future development of compact macrocycles with predictable circulation half-life in vivo.

Publisher

Research Square Platform LLC

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3