COVID-19 individual participant data meta-analyses. Can there be too many? Results from a rapid systematic review.

Author:

Maxwell Lauren1ORCID,Shreedhar Priya1ORCID,Levis Brooke2ORCID,Chavan Sayali Arvind3ORCID,Akter Shaila1ORCID,Carabali Mabel4ORCID

Affiliation:

1. Universitatsklinikum Heidelberg Institut fur Global Health

2. Institut Lady Davis pour la recherche médicale: Lady Davis Institute for Medical Research

3. Charite Universitatsmedizin Berlin

4. Université de Montréal École de Santé Publique: Universite de Montreal Ecole de Sante Publique

Abstract

Abstract Background Individual participant data meta-analyses (IPD-MAs), which include harmonising and analysing participant-level data from related studies, provide several advantages over aggregate data meta-analyses, which pool study-level findings. IPD-MAs are especially important for building and evaluating diagnostic and prognostic models, making them an important tool for informing the research and public health responses to COVID-19. Methods We conducted a rapid systematic review of protocols and publications from planned, ongoing, or completed COVID-19-related IPD-MAs to identify areas of overlap and maximise data request and harmonisation efforts. We searched four databases using a combination of text and MeSH terms. Two independent reviewers determined eligibility at the title-abstract and full-text stage. Data were extracted by one reviewer into a pretested data extraction form and subsequently reviewed by a second reviewer. Data were analysed using a narrative synthesis approach. A formal risk of bias assessment was not conducted. Results We identified 31 COVID-19-related IPD-MAs, including five living IPD-MAs and ten IPD-MAs that limited their inference to published data (e.g., case reports). We found overlap in study designs, populations, exposures, and outcomes of interest. For example, 26 IPD-MAs included RCTs; 17 IPD-MAs were limited to hospitalised patients. Sixteen IPD-MAs focused on evaluating medical treatments, including six IPD-MAs for antivirals, four on antibodies, and two that evaluated convalescent plasma. Conclusions Collaboration across related IPD-MAs can leverage limited resources and expertise by expediting the creation of cross-study participant-level data datasets, which can, in turn, fast-track evidence synthesis for the improved diagnosis and treatment of COVID-19. Open Science Foundation registration number 10.17605/OSF.IO/93GF2

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3