Identification of genetic loci and candidate genes underlying freezing tolerance in wheat seedlings

Author:

Pan Xu1ORCID,Nie Xianlai1,Gao Wei1,Yan Shengnan1,Feng Hansheng1,Cao Jiajia1,Lu Jie1,Shao Hui1,Ma Chuanxi1,Chang Cheng1,Zhang Haiping1

Affiliation:

1. Anhui Agricultural University

Abstract

Abstract Frost damage restricts wheat growth, development, and geographical distribution. However, the genetic mechanism of freezing tolerance (FT) remains unclear. Here, we evaluated FT phenotypes of 245 wheat varieties (lines) and genotyped them using a Wheat 90K array. The association analysis showed that ten stable loci were significantly associated with FT (P < 1 × 10-4), and explained 6.45-26.33% of the phenotypic variation. In particular, the major locus QFT.ahau-7B.2 was consistently related to all nine sets of FT phenotypic data. Based on five cleaved amplified polymorphic sequence (CAPS) markers closely linked to QFT.ahau-7B.2, we narrowed down the target region to the 566.13-566.63 Mb interval on chromosome 7B, in which four candidate genes were annotated. Of these, only TaRPM1-7BL exhibited consistent differential expression after low temperature treatment between freezing-tolerant and freezing-sensitive varieties. The results of cloning and whole-exome capture sequencing indicated that there were two main haplotypes for TaRPM1-7BL, including freezing-tolerant Hap1 and freezing-sensitive Hap2. Based on the representative SNP (+2556, A/G), leading to an amino acid change in the NBS domain, a CAPS marker (CAPS-TaRPM1-7BL) was developed and validated in 431 wheat varieties (lines) and 318 F2 lines derived from the cross of ‘Annong 9267’ (freezing-tolerant) × ‘Yumai 9’ (freezing-sensitive). Subsequently, the TaRPM1-7BL gene was silenced in ‘Yumai 9’ by virus-induced gene silencing (VIGS), and these silenced wheat seedlings exhibited enhanced FT phenotypes, suggesting that TaRPM1-7BL negatively regulates FT. These findings are valuable for understanding the complex genetic basis of FT in wheat.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3