Hotspot mapping of pest introductions in the EU: A regional analysis of environmental, anthropogenic and spatial effects

Author:

Rosace Maria Chiara1ORCID,Conesa David V.2,López-Quílez Antonio2,Marini Lorenzo3,Martinez-Beneito Miguel A.2,Nardi Davide3,Rossi Vittorio4,Vicent Antonio5,Cendoya Martina5

Affiliation:

1. Universita Cattolica del Sacro Cuore - Campus di Piacenza

2. Universitat de València: Universitat de Valencia

3. University of Padua: Universita degli Studi di Padova

4. Universita Cattolica del Sacro Cuore - Campus di Piacenza e Cremona

5. Institut Valencia d'Investigacions Agraries: Instituto Valenciano de Investigaciones Agrarias

Abstract

Abstract

Plant pests pose a significant threat to global agriculture, natural ecosystems and biodiversity, causing severe ecological and economic damage. Identifying regions more susceptible to pest introductions is crucial for developing effective prevention, early detection and outbreak response strategies. While historical data on pest introductions in the European Union (EU) exist, they are typically reported at the regional level. This broad aggregation poses a challenge for accurate analysis in plant health research. This study addresses this gap by leveraging existing regional data to identify hotspots for pest introductions within the EU and the UK, through a Bayesian hierarchical spatial model. Specifically, we employed the Besag, York, and Mollié (BYM) model to identify higher risk regions by incorporating covariates and spatial effects to borrow information from neighbouring areas. The results showed a positive effect of annual average temperature, annual average precipitation, and human population density on the risk of pest introduction, highlighting the relevance of the spatial component. Our analysis pinpoints high-risk regions in southern Europe, particularly northern Italy. Additionally, the high human population density and documented pest introductions in the Netherlands contributed to its elevated risk. While limitations exist due to the regional nature of the data, this study represents a methodological advancement, demonstrating the effectiveness of spatial models and offering a robust framework for future studies using regional data. It also provides insights that can inform targeted prevention, early detection and preparedness strategies, ultimately contributing to safeguarding agriculture, natural ecosystems and biodiversity in Europe.

Publisher

Springer Science and Business Media LLC

Reference94 articles.

1. Agrios G (2005) Plant Pathology, 5th edn. Elsevier academic, United States of America

2. Hot spot area analysis of onion armyworm outbreak in Nueva Ecija using geographic information system;Alberto RT;Spat Inf Res,2019

3. Climatic warming increases voltinism in European butterflies and moths;Altermatt F;Proc R Soc B Biol Sci,2010

4. Potential, attainable, and current levels of global crop diversity;Aramburu Merlos F;Environ Res Lett,2022

5. Gaps in border controls are related to quarantine alien insect invasions in Europe;Bacon SJ;PLoS ONE,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3