Deep Learning Phase Error Correction for Cerebrovascular 4D Flow MRI

Author:

Srini Shanmukha1,Masutani Evan1,Norbash Alexander1,Hsiao Albert1

Affiliation:

1. UC San Diego Health System

Abstract

Abstract Background and Purpose Background phase errors in 4D Flow MRI may negatively impact blood flow quantification. In this study, we assessed their impact on cerebrovascular flow volume measurements, evaluated the benefit of manual image-based correction, and assessed the potential of a convolutional neural network (CNN), a form of deep learning, to directly infer the correction vector field. Methods With IRB waiver of informed consent, we retrospectively identified 96 MRI exams from 48 patients who underwent cerebrovascular 4D Flow MRI from October 2015 to 2020. Flow measurements of the anterior, posterior, and venous circulation were performed to assess inflow-outflow error and the benefit of manual image-based phase error correction. A CNN was then trained to directly infer the phase-error correction field, without segmentation, from 4D Flow volumes to automate correction, reserving from 23 exams for testing. Statistical analyses included Spearman correlation, Bland-Altman, Wilcoxon-signed rank (WSR) and F-tests. Results Prior to correction, there was strong correlation between inflow and outflow (ρ = 0.833–0.947) measurements with the largest discrepancy in the venous circulation. Manual phase error correction improved inflow-outflow correlation (ρ = 0.945–0.981) and decreased variance (p < 0.001, F-test). Fully automated CNN correction was non-inferior to manual correction with no significant differences in correlation (ρ = 0.971 vs ρ = 0.982) or bias (p = 0.82, Wilcoxon-Signed Rank test) of inflow and outflow measurements. Conclusions Residual background phase error can impair inflow-outflow consistency of cerebrovascular flow volume measurements. A CNN can be used to directly infer the phase-error vector field to fully automate phase error correction.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3