Affiliation:
1. Institut Català de la Salut, Gerència Territorial de la Catalunya Central
2. Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona
3. Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages
4. iDoc24 Inc
5. Fundació Althaia de Manresa
6. Hospital Universitari Mollet
Abstract
Abstract
Background
Dermatological conditions are a relevant health problem. Machine learning (ML) models are increasingly being applied to dermatology as a diagnostic decision support tool using image analysis, especially for skin cancer detection and disease classification.
Objective
The objective of this study was to perform a prospective validation of an image analysis ML model, which is capable of screening 44 skin diseases, comparing its diagnostic accuracy with that of General Practitioners (GPs) and teledermatology (TD) dermatologists in a real-life setting.
Methods
Prospective, diagnostic accuracy study including 100 consecutive patients with a skin problem who visited a participating GP in central Catalonia, Spain, between June 2021 and October 2021.
The skin issue was first assessed by the GPs. Then an anonymised skin disease picture was taken and uploaded to the ML application, which returned a list with the Top-5 possible diagnosis in order of probability. The same image was then sent to a dermatologist via TD for diagnosis, as per clinical practice. The GPs Top-3, ML model’s Top-5 and dermatologist’s Top-3 assessments were compared to calculate the accuracy, sensitivity, specificity and diagnostic accuracy of the ML models.
Results
The overall Top-1 accuracy of the ML model (39%) was lower than that of GPs (64%) and dermatologists (72%). When the analysis was limited to the diagnoses on which the algorithm had been explicitly trained (n=82), the balanced Top-1 accuracy of the ML model increased (48%) and in the Top-3 (75%) was comparable to the GPs Top-3 accuracy (76%). The Top-5 accuracy of the ML model (89%) was comparable to the dermatologist Top-3 accuracy (90%).
For the different diseases, the sensitivity of the model (Top-3 87% and Top-5 84%) is higher than that of the clinicians (Top-3 GPs 76% and Top-3 dermatologists 84%) only in the benign tumour pathology group, being on the other hand the most prevalent category (n=53).
About the satisfaction of professionals, 92% of the GPs considered it as a useful diagnostic support tool (DST) for the differential diagnosis and in 60% of the cases as an aid in the final diagnosis of the skin lesion.
Conclusions
The overall diagnostic accuracy of the model in this study under real conditions is lower than that of both GPs and dermatologists, a fact that is consistent with the few existing prospective studies under real conditions. These results highlight the potential of the ML models to assist GPs as a DST for skin conditions especially in the differential diagnosis. However, external testing in real conditions is essential for data validation and regulating these AI diagnostic models, in order to deploy ML models in a Primary Care setting.
Publisher
Research Square Platform LLC
Reference51 articles.
1. Most common dermatologic conditions encountered by dermatologists and nondermatologists;Wilmer EN;Cutis,2014
2. Hodge JA, Rohrer TA, Beek MJ Van, Margolis DJ, Sober AJ, Weinstock MA. The burden of skin disease in the United States. J Am Dermatology [Internet]. 2017;76(5):958–972.e2. Available from: http://dx.doi.org/10.1016/j.jaad.2016.12.043
3. The profile of dermatological problems in primary care: Clinical dermatology • Original article;Kerr OA;Clin Exp Dermatol,2010
4. Servei Català de la Salut. Activitat assistencial de la xarxa sanitària de Catalunya 2012. Departament de Salut. Generalitat de Catalunya. 2013; Available from: http://www20.gencat.cat/portal/site/salut/menuitem.40dd1b31aa3dd6ec3bfd8a10b0c0e1a0/?vgnextoid=c234906c29f3a310VgnVCM1000008d0c1e0aRCRD&vgnextchannel=c234906c29f3a310VgnVCM1000008d0c1e0aRCRD&vgnextfmt=detall&contentid=6f99ec8747db2410VgnVCM1000008d0c1e0aR
5. Dermatology in primary care: Prevalence and patient disposition;Lowell BA;J AM ACAD DERMATOL.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献