Transforming Handwritten Answer Assessment: A Multi-Modal Approach Combining Text Detection, Handwriting Recognition, and Language Models

Author:

Hiremath Aditya1,Irabatti Nipun1,Desai Akhilesh1,Dhondge Prabhuraj1,Sheikh Shagufta1

Affiliation:

1. AISSMS Institute of Information Technology

Abstract

Abstract

This paper proposes an automated system for grading handwritten subjective answers, leveraging advanced computer vision, natural language processing, and large language model techniques. Although time-consuming, the system presents a promising theoretical approach by employing CRAFT for text detection, TrOCR for handwritten text recognition, and a fine-tuned language model for answer evaluation. Experimental results demonstrate the system's potential accuracy in transcribing handwritten text and consistency in grading answers compared to human raters. The proposed methodology offers a scalable and efficient solution to automate the traditionally labor-intensive task of grading handwritten responses, with the potential to transform education assessment practices. The system's performance, limitations, and future research directions to improve efficiency are discussed.

Publisher

Research Square Platform LLC

Reference21 articles.

1. Youngmin Baek and Bado Lee and Dongyoon Han and Sangdoo Yun and Hwalsuk Lee (2019) Character Region Awareness for Text Detection. CoRR abs/1904.01941dblp computer science bibliography, https://dblp.org, https://dblp.org/rec/journals/corr/abs-1904-01941.bib, Wed, 24 Apr 2019 12:21:25 +0200, 1904.01941, arXiv, http://arxiv.org/abs/1904.01941

2. Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei A. F. Flor{\^{e}}ncio and Cha Zhang and Zhoujun Li and Furu Wei (2021) TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models. CoRR abs/2109.10282dblp computer science bibliography, https://dblp.org, https://dblp.org/rec/journals/corr/abs-2109-10282.bib, Sun, 02 Oct 2022 15:32:22 +0200, 2109.10282, arXiv, https://arxiv.org/abs/2109.10282

3. Ashish Vaswani and Noam Shazeer and Niki Parmar and Jakob Uszkoreit and Llion Jones and Aidan N. Gomez and Lukasz Kaiser and Illia Polosukhin. Attention Is All You Need. dblp computer science bibliography, https://dblp.org, https://dblp.org/rec/journals/corr/VaswaniSPUJGKP17.bib, Sat, 23 Jan 2021 01:20:40 +0100, 1706.03762, arXiv, http://arxiv.org/abs/1706.03762, 2017, abs/1706.03762, CoRR

4. Bashir, Muhammad Farrukh and Arshad, Hamza and Javed, Abdul Rehman and Kryvinska, Natalia and Band, Shahab S. (2021) Subjective Answers Evaluation Using Machine Learning and Natural Language Processing. IEEE Access 9(): 158972-158983 https://doi.org/10.1109/ACCESS.2021.3130902, Machine learning;Tokenization;Task analysis;Tagging;Vocabulary;Semantics;Data models;Subjective answer evaluation;big data;machine learning;natural language processing;word2vec

5. Th{\'{e}}odore Bluche and J{\'{e}}r{\^{o}}me Louradour and Ronaldo O. Messina (2016) Scan, Attend and Read: End-to-End Handwritten Paragraph Recognition with {MDLSTM} Attention. CoRR abs/1604.03286dblp computer science bibliography, https://dblp.org, https://dblp.org/rec/journals/corr/BlucheLM16.bib, Mon, 13 Aug 2018 16:47:16 +0200, 1604.03286, arXiv, http://arxiv.org/abs/1604.03286

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3