A new definition of generalization of the factorial function with new results about the gamma of negative integers

Author:

Hussein Mohammed1

Affiliation:

1. AL-Ayen university

Abstract

Abstract The gamma function is a mathematical function that generalizes the concept of factorial to real and complex numbers. While the gamma function is a powerful tool in mathematics, it does have certain limitations and potential issues for example, · Non-integer values: The gamma function is not defined for negative integers, this limitation can be problematic in certain contexts where negative integer values are involved. · Pole at zero: The gamma function has a pole at zero, which means it is undefined at this point. This can pose challenges when working with functions or equations that involve the gamma function near or at zero. · Computational complexity: Computing the gamma function numerically can be computationally expensive and time-consuming, especially for large or complex arguments. In this study, we have addressed the aforementioned issues by proposing a new definition for generalizing the factorial function, which serves as an alternative definition of the gamma function. This new definition is formulated based on the utilization of the differential operator. The resulting definition stands out for its simplicity and effectiveness in computing real numbers, including non-positive integers. Moreover, our research has yielded fresh insights into the gamma function's behavior with respect to non-positive integers, potentially leading to a transformative approach in employing fractional differential and integral equations to describe a wide range of cosmic phenomena.

Publisher

Research Square Platform LLC

Reference15 articles.

1. Gamma and Factorial in the Monthly;Borwein JM;The American Mathematical Monthly,2018

2. On some properties of the gamma function;Batir N;Expo Math,2008

3. “Leonhard Euler’s Integral: A Historical Profile of the Gamma Function;Davis PJ;The American Mathematical Monthly,1959

4. R. A. Askey and Ranjan Roy, “Gamma function,” in NIST Handbook of Mathematical Functions, 2010, pp. 136–147.

5. C. G. van der. Laan, N. M. Temme, and N. Centrum voor Wiskunde en Informatica (Amsterdam, Calculation of special functions: the gamma function, the exponential integrals and error-like functions. Centrum voor Wiskunde en Informatica, 1984.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3