Alterations of the Alpha Rhythm in Visual Snow Syndrome: A Case-Control Study

Author:

Klein Antonia1,Aeschlimann Sarah A.1,Zubler Frederic1,Scutelnic Adrian1,Riederer Franz1,Ertl Matthias2,Schankin Christoph J.1

Affiliation:

1. Inselspital, University of Bern

2. University of Bern

Abstract

Abstract

Background: Visual snow syndrome is a disorder characterized by the combination of typical perceptual disturbances. The clinical picture suggests an impairment of visual filtering mechanisms and might involve primary and secondary visual brain areas, as well as higher-order attentional networks. On the level of cortical oscillations, the alpha rhythm is a prominent EEG pattern that is involved in the prioritisation of visual information. It can be regarded as a correlate of inhibitory modulation within the visual network. Methods: Twenty-one patients with visual snow syndrome were compared to 21 controls matched for age, sex, and migraine. We analysed the resting-state alpha rhythm by identifying the individual alpha peak frequency using a fast Fourier transform and then calculating the power spectral density around the individual alpha peak (+/- 1Hz). We anticipated a reduced power spectral density in the alpha band over the primary visual cortex in participants with visual snow syndrome. Results: There were no significant differences in the power spectral density in the alpha band over the occipital electrodes (O1 and O2), leading to the rejection of our primary hypothesis. However, the power spectral density in the alpha band was significantly reduced over temporal and parietal electrodes. There was also a trend towards increased individual alpha peak frequency in the subgroup of participants without comorbid migraine. Conclusions: Our main finding was a decreased power spectral density in the alpha band over parietal and temporal brain regions corresponding to areas of the secondary visual cortex. These findings complement previous functional and structural imaging data at a electrophysiological level. They underscore the involvement of higher-order visual brain areas, and potentially reflect a disturbance in inhibitory top-down modulation. The alpha rhythm alterations might represent a novel target for specific neuromodulation. Trial registration: we preregistered the study before preprocessing and data analysis on the platform osf.org (DOI: 10.17605/OSF.IO/XPQHF, date of registration: November 19th 2022).

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3