The Role of Water in Radiation-induced Fragmentation of Cellulosic Backbone Polysaccharides

Author:

Muscolino Emanuela1,Sabatino Maria Antonietta1,Jonsson Mats2,Dispenza Clelia1

Affiliation:

1. Università degli Studi di Palermo

2. KTH Royal institute of Technology

Abstract

Abstract Xyloglucan (XG) is a cellulosic backbone polysaccharide commercially used for food applications, but also widely investigated in biomedical applications, for its gelling properties and specific biological activity. In this study, the possibility of using gamma radiation to cleave XG and generate lower molecular weight variants was explored. The impact of absorbed dose and irradiation conditions on the XG molecular weight distribution was investigated. Two other cellulosic polysaccharides, hydroxypropyl cellulose (HPC) and an oxidized variant of XG (CXG), were also studied for comparison. Before irradiation, the polymers were characterized with thermal gravimetric analysis (TGA) and, after irradiation, with gel filtration chromatography (GFC). The results showed that for XG irradiated in dilute aqueous solution, a dose of 10 Gy is sufficient to significantly reduce the polymer molecular weight, while HPC is less affected by irradiation under identical conditions. When the polymers were irradiated in the solid form, either dry or humid, the reduction in average molecular weight is much less pronounced. Interestingly, for HPC the cleavage of the chains is more pronounced for the dry than for the humid powder. A similar behavior, but less pronounced, was observed for XG and CXG. Arguably, when water was present in the system as bound water it had a protective effect. This is probably due to energy transfer from the polymer to the bound water preventing chain scission. Indeed, humid HPC has more bound water than XG and CXG. Conversely, when water was present as solvent, water radiolysis products were able to efficiently induce depolymerization.

Publisher

Research Square Platform LLC

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3