Effects of silicon concentration on the magnetic and structural properties of nanostructured Fe-Si alloy synthesized by ball mill process

Author:

OUADAH M'hamed,YOUNES Abderrahmane1ORCID

Affiliation:

1. Algerian Research Center in Industrial Technologies: Centre de Recherche en Technologies Industrielles

Abstract

Abstract This study aims to elaborate on the production of a nanostructured Fe-Si alloy with varying silicon concentrations and how it can enhance the magnetic properties of the alloy. In order to achieve this, the mechanical alloying technique was employed to create the nanostructured alloy. After the mechanical ball milling process, the morphological, structural, and magnetic properties of the alloy were thoroughly analyzed using advanced techniques such as scanning electron microscopy (SEM) coupled with Energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The results from these techniques revealed significant changes in the properties of the alloy. One of the major findings of this study was the appearance of Fe3Si phase, commonly known as Suessite, after the mechanical milling process. This indicates that the milling process caused a transformation in the crystal structure of the alloy. Additionally, an increase in silicon concentration led to a reduction in crystallite sizes, which was observed through the XRD analysis. Furthermore, the lattice strain and lattice parameters of the alloy were observed to increase with increasing silicon concentration until it reached 3%. After this point, the value of the lattice parameter remained constant, indicating that further increases in silicon concentration did not significantly impact the lattice structure of the alloy. The milled samples exhibit improved magnetic properties, with increased saturation magnetization values observed as the silicon concentration increased.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3