Giant Kerr nonlinearity of terahertz waves mediated by stimulated phonon polaritons in a microcavity chip

Author:

Wu Qiang1ORCID,Huang Yibo1,Lu Yao1ORCID,Li Wei2,Xu Xitan1ORCID,Jiang Xinda1,Ma Ruobin1,Chen Lu1,Ruan Ningjuan2,Xu Jingjun1ORCID

Affiliation:

1. Nankai University

2. China Academy of Space Technology

Abstract

Abstract Optical Kerr effect, in which input light intensity linearly alters the refractive index, has enabled the generation of optical solitons, supercontinuum spectra, and frequency combs, playing vital roles in the on-chip devices, fiber communications, and quantum manipulations. Especially, terahertz Kerr effect, featuring fascinating prospects in future high-rate computing, artificial intelligence, and cloud-based technologies, encounters a great challenge due to the rather low power density and feeble Kerr response. Here, we demonstrate a giant terahertz frequency Kerr nonlinearity mediated by stimulated phonon polaritons. Under the influences of the giant Kerr nonlinearity, the power-dependent refractive index change would result in a frequency shift in the microcavity, which was experimentally demonstrated via the measurement of the resonant mode of a chip-scale lithium niobate Fabry-Pérot microcavity. Attributed to the existence of stimulated phonon polaritons, the nonlinear coefficient extracted from the frequency shifts are orders of magnitude larger than that of visible and infrared light, which is also theoretically demonstrated by nonlinear Huang equations. This work opens an avenue for many rich and fruitful terahertz Kerr effect based physical, chemical, and biological systems that have terahertz fingerprints.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3